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Abstract This thesis demonstrates for the �rst time that it is possible to automatically dis-

cover self-replicating structures in cellular space automata models rather than, as has been done

in the past, to design them manually. Self-replication is de�ned as the process an entity undergoes

in constructing a copy of itself. Von Neumann was the �rst to investigate arti�cial self-replicating

structures and did so in the context of cellular automata, a cellular space model consisting of nu-

merous �nite-state machines embedded in a regular tessellation. Interest in arti�cial self-replicating

systems has increased in recent years due to potential applications in molecular-scale manufactur-

ing, programming parallel computing systems, and digital hardware design, and also as part of the

�eld of arti�cial life.

In this dissertation, genetic algorithms are used with a cellular automata framework for the �rst

time to automatically discover self-replicating structures. The discovered self-replicating structures

compare favorably in terms of simplicity with those generated manually in the past but di�er in

unexpected ways. This dissertation presents representative samples of the self-replicating struc-

tures and analyzes them both quantitatively and qualitatively. In order to e�ectively search the

underlying rule space of such automata models, a �tness function consisting of three independent

criteria is designed and successfully applied. Also, a new cellular space automata model called

e�ector automata is introduced. It is shown to be more computationally feasible and to promote

the discovery of more self-replicating structures as compared to the cellular automata models used

in previous studies. In addition, a new paradigm for cellular space models with weak rotational

symmetry called component-sensitive input is introduced and shown to facilitate discovery of self-

replicating structures. The results presented suggest that genetic algorithms can be powerful tools

for exploring the space of possible self-replicating structures. Furthermore, this research sheds light

on the nature of creating self-replicating structures and opens the door to further studies that could

eventually lead to the discovery of new self-replicating molecular structures.
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Chapter 1

Introduction

Self-replicating systems are systems that have the ability to produce copies of themselves. Bio-

logical organisms are the most familiar examples of such systems, and until the late 1940s, the

only instances formally researched. Mathematicians and scientists began studying arti�cial self-

replicating systems when it became desirable to gain a deeper understanding of complex systems and

the fundamental information{processing principles involved in self{replication [von Neumann51,

von Neumann66]. The initial models consisted of abstract logical machines, or automata, em-

bedded in cellular spaces [Arbib66, Codd68, Holland76, Langton84, Reggia93]. In addition to

automata, other computational models such as those based on traditional programming languages

continue to be the main subject of research [Ray92, Koza94]. Physical models exhibiting self-

replication such as mechanical and biochemical models have also been constructed and stud-

ied [Penrose58, Orgel92, Hong92].

The previous computational models of self-replication in cellular spaces have all been manually

designed, a very di�cult and time-consuming process. This research introduces the use of genetic

algorithms to discover automata rules that govern emergent self-replicating processes. A new model

consisting of movable automata embedded in a cellular space is introduced in this context, and is

shown to have desirable properties when compared to von Neumann's cellular automaton model.

Given dynamically evolving automata, identi�cation of e�ective performance measures, called �t-

ness functions, for self-replicating structures is a di�cult task, and we give multiple solutions to this

problem. A genetic algorithm using three �tness criteria was applied to automate rule discovery.

The results indicate that the �tness functions employed are e�ective and that genetic algorithms

can be used to successfully discover rules for self-replicating structures. As a result of obtaining

large quantities of self-replicating structures, a qualitative classi�cation system is identi�ed and

dynamical systems issues are investigated. This investigation indicates that such structures are

situated in the phase transition between periodic and chaotic behaviors.

1.1 Motivations

A better understanding of self-replicating systems and the automatic discovery of such systems could

be useful in a number of ways, for both practical and theoretical purposes. These are described

below.
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Nanotechnology

Research concerning atomic-scale manufacturing technologies or \nanotechnology" suggests that

self-replicating devices will play a key role [Drexler89], and some researchers have already gained

insight from the early work on hand-designed self-replicating systems [Merkle94]. In this technology,

assemblers are microscopic devices resembling industrial robot arms that are used to build molecular

machines. From [Drexler89, pg. 503]:

If assemblers are to process large quantities of material atom-by-atom, many will be

needed; this makes pursuit of self-replicating systems a natural goal.

In addition to the fundamental question of how to bring about such arti�cial self-replication, issues

faced by the designer of self-replicating assemblers include self-inspection, the halting of the self-

replication process, size minimization, and the choice of instruction encoding. These potentially

di�cult design issues could be abated by systems that can automatically design self-replicating

assemblers. This is the theme of this dissertation.

Within nanotechnology, researchers are also investigating engineering custom molecules. If

the basic physical processes can be identi�ed and represented e�ectively, automatic discovery ap-

proaches might be applied to discover new self-replicating molecular structures.

Programming Massively Parallel Computers

Programming massively parallel computers has traditionally been a di�cult task, and to date,

only a relatively small number of applications have made use of massive parallelism. It has been

proposed that evolutionary bred self-replicating programs could facilitate programming these sys-

tems [Ray92]. Self-replicating sub-programs would compete for the available processors, and those

that performed better with respect to the target application, would be allowed to create perfect and

imperfect (mutation) copies as o�spring. Similar experiments performed on sequential computers

have shown that self-replicating programs can optimize their algorithms by a factor of 5.75 in a few

hours of real time [Ray92].

Programming Cellular Automata

Cellular automata (CA) are a class of discrete dynamical system models in which many simple com-

ponents interact to produce complicated patterns of behavior. A lattice of cells which represent

identical �nite state machines de�nes the space of the CA. The behavior of each cell is governed

by a global transition rule which speci�es the next state for every possible present state condition.

This transition rule is typically a very large table of transitions and is thus very di�cult to man-

ually program. Since CAs have found wide application in science and engineering, automatically

programming them would be greatly bene�cial.

Anti-virus Technology

Computer viruses are programs that use the resources of a host computer system to passively

self-replicate and \infect" computers. Because viruses can be destructive, creating e�ective anti-

virus techniques is an important area of research. An important anti-virus method centers around

scanning disks and memories for known viruses and then executing a repair operation if possible. A
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complementary approach is to monitor the computer's behavior and watch for telltale signs of virus

activity. These approaches have been somewhat successful, but it is believed that a biologically-

inspired \immune system" approach would be e�ective in keeping up with the accelerated creation

of new viruses and the increased interconnectivity of worldwide computers [Kephart94]. Thus,

understanding the self-replication processes that govern viruses is an important area of research.

Origins of Life

Contemporary theories [Miller74, Watson87] of the origins of life postulate a prebiotic period of

molecular replication before the emergence of living cells. Investigating the fundamental informa-

tion processing mechanisms underlying self-replication can help us to answer questions concerning

the minimum information content needed for emergence of the �rst replicating molecules. Ana-

lyzing \incubation periods" required for spontaneous emergence to occur in arti�cial systems can

shed light on the origin of life under both terrestrial and extraterrestrial conditions. Self-replicating

models may also lead to a better understanding of the biology of life on Earth, based on the as-

sumption that the rules underlying biological processes might also apply to arti�cial environments

and structures.

Studying computational models of self-replicating phenomena has certain advantages compared

to laboratory-based chemical experiments, which are also underway [Hong92, Orgel92]. Speci�cally,

computational models allow the experimenter to precisely control the details and parameters of

experiments. Computer simulations are open to repeated internal inspections and permit large

numbers of experiments. They are also helpful in separating speci�c chemical properties from

the information processing properties present in the simulated system (for example [Chou94]). In

addition, with the availability of more powerful computers, larger and more complex systems can

be simulated.

Arti�cial Life

The �eld of Arti�cial Life (ALife) which studies life-like behaviors (such as self-replication) from a

computational perspective was largely born out of studies [Langton86] based on cellular automata.

From [Langton88, pg. 1]:

Arti�cial Life is the study of man-made systems that exhibit behaviors characteristic

of natural living systems. It complements the traditional biological sciences concerned

with the analysis of living organisms by attempting to synthesize life-like behaviors

within computers and other arti�cial media. By extending the empirical foundation

upon which biology is based beyond the carbon-chain life that has evolved on Earth,

Arti�cial Life can contribute to theoretical biology by locating life-as-we-know-it within

the larger picture of life-as-it-could-be.

Thus, biology is seen as a top-down, analytic study of the material basis of life, whereas ALife is a

bottom-up, synthetic study of the formal basis of life. De�ning \life" in a precise manner is di�cult

due to the presence of organisms that are sterile, and organisms that lack a metabolism, such as

viruses. However, self-replication is generally seen as a fundamental property of life [Farmer91].

From this perspective, self-replicating systems play a critical role in advancing ALife research.
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Other Motivations

Additional incentives for studying the automatic discovery of self-replicating systems include:

� Topics in the study of dynamical systems theory could potentially bene�t from this research.

Speci�cally, hypotheses which propose that systems having complexity similar to biologi-

cal organisms are near the phase transition between complex and chaotic systems may be

supported.

� The transport of large numbers of industrial machines to the moon or Mars would be pro-

hibitively costly. If a self-replicating machine that used locally-available materials could be de-

veloped, this would make commercialization more feasible. A NASA study of self-replicating

lunar factories [Freitas82] investigated the requirements for this type of self-replicating system.

� Previous research [Laing76] has described design possibilities for molecular realizations of

automata, especially with respect to self-repair and self-inspection, which are closely related

to self-replication.

� Recent work on self-replicating digital electronic hardware [Mange94] seeks to create hardware

systems that can self-replicate, self-repair, and evolve.

1.2 Contributions

The main contributions of this thesis are as follows.

Automatic Discovery of Self-Replicating Structures

This is the �rst work to show proof that it is possible to automatically discover self-replicating

structures in cellular space automata models. Genetic algorithms are used in conjunction with

novel �tness functions, and the quantities of discovered structures found are shown to be statisti-

cally signi�cant. The discovered structures, presented in Chapter 5, compare favorably in terms of

simplicity with those generated manually in the past [Reggia93]. However, more interesting is that

these replicating structures di�er in unexpected ways from those developed in previous automata

models. For example, they all move during replication, and all generate active unused components.

Furthermore, many past self-replicating structures have relied upon foreign components (i.e. com-

ponents that do not comprise the original structure) to aid in directing the self-replication process.

The automatically discovered structures presented in this thesis are able to self-replicate without

such additional components, making them yet simpler than the manually-designed structures.

Fitness Functions for Self-Replication

This is the �rst work to derive �tness functions for self-replication in any cellular space automata

model. These �tness functions, derived in Chapter 4, are general and are applicable to many cellular

space models. In addition they may also be used with other optimization and search techniques.

Finding appropriate functions is a di�cult task for reasons related to assigning partial �tness

measures. For example, a function based on counting the number of replicants is useless early on

as there will generally be none. It was found that a �tness function based on multiple performance
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criteria, such as growth of individual components and relative position measures was needed. This

multiobjective optimization problem was solved by weighting the three criteria via experimentation,

and by using an adaptive �tness function { a second genetic algorithm was successfully employed

to dynamically evolve higher performing �tness functions.

Another impediment to deriving these �tness functions is the tendency to impose biases on the

self-replication process, instead of allowing such processes to evolve \naturally". An example of such

biases would be to assign �tness based on how well an evolving structure matched a prede�ned

template. This di�culty is overcome by designing �tness functions that use statistics that do

not contain absolute position information in their calculation. To further guard against bias, key

�tness function parameters are optimized using a second, higher-level meta-�tness function. Penalty

functions are derived and also aid in this regard.

A New Paradigm for Weakly Rotation-Symmetric Cellular Space Models

A new paradigm for weakly rotation symmetric cellular space models is introduced in Chapter 3

which signi�cantly reduces rule table size without adversely a�ecting the 
exibility of the model.

Called component-sensitive input, this technique is general enough so that it may be applied to

any cellular space model having weak rotational symmetry. Interest in cellular space models that

incorporate weak rotational symmetry has grown in recent years, and this technique, introduced

in Chapter 3, allows larger models (more states) to be computationally simulated. In the context

of automatically programming cellular space rule tables, this technique greatly reduces the search

space size, thus facilitating the search process. Experimental results using genetic algorithms are

presented which verify this.

A New Cellular Space Model

A new cellular space automata model called E�ector Automata (EA) is introduced in Chapter 3

and shown to have the following advantages over similar models such as von Neumann's cellular

automata. First, the EA model more closely parallels physical systems by directly incorporating

movement and characteristics of mass-preservation physics. In each cell, a new automaton can only

be created as a result of cell division, whereas other models generally allow spontaneous generation

of such automata. Thus, emergent structures in EA simulations have a higher degree of realism than

those of other models. Second, by incorporating movement and automaton division, the EA model

is better suited to studying self-replicating systems. Third, simulation of the EA model is shown

to be signi�cantly less resource intensive, and hence more computationally feasible, especially as

the number of states increases. Lastly, the EA model allows the designer to create cellular space

models at a higher level of abstraction using less rules than that of CA models. For example, in

CA models, more rules are needed to encode the movement of an automaton. Those CA rules are

state transitions which are of a lower-level as compared to EA movement-actions, and thus they

can be more di�cult and tedious to work with.

Comparison of Search Techniques

E�ective techniques for searching extremely large search spaces are compared with respect to the

automatic discovery of self-replicating structures in the CA and EA cellular space models. The
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techniques compared in Chapter 5 are genetic algorithms (GAs), and multiple restart stochas-

tic hillclimbing, and simulated annealing. It is found that GAs outperform the other techniques

showing that GAs are indeed e�ective at �nding self-replicating structures.

While genetic algorithms have been previously applied in other computational models involv-

ing cellular automata [Richards90, Mitchell94], their use to discover self-replicating structures is

daunting because of the large \chromosome" needed. Furthermore, the computational burden of

simulating a large population of automata models is enormous, which presumably accounts for the

absence of research in this area. In spite of strides made in reducing the computational load (by

using the EA model and component-sensitive input techniques), the experimental results presented

in this thesis were run on parallel supercomputers, and individual runs often required days to

complete.

Classi�cation of Self-Replicating Structures

In
uenced by biological models of self-replication, recent work in self-replicating structures has re-

laxed the requirement for universal computation and construction. Such models have not presented

a precise de�nition and framework regarding self-replicating structures. This thesis presents the

�rst detailed framework for studying self-replicating structures. Beginning with the de�nition of a

self-replicating structure, relevant set-theoretic functions and terms are introduced.

In addition, this is the �rst work to de�ne a classi�cation system for self-replication in cellular

space automata models. Previously, manual derivation of self-replicating structures produced tens

of structures. With the capability to automatically generate thousands of such structures, it is

possible to demarcate qualitative classes of self-replication processes.

Simulation System

To carry out the research described in this thesis, a large software system was created in which

a wide variety of experiments may be conducted. Two cellular space models are supported and

along with two rotational symmetries. This system also allows automatic programming of cellular

space models via genetic algorithms, and permits researchers to experiment with many model

parameters. Since certain experiments can require enormous amounts of processing, a version that

runs on parallel supercomputers was developed.

1.3 Content of Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 reviews previous related

work and background material which is relevant to the thesis. This covers research in cellular

space automata models, self-replication in these models, genetic algorithms, and rule discovery

using genetic algorithms. Chapter 3 presents a new cellular space model called E�ector Automata,

develops its theory, and contrasts it with cellular automata models. Of particular concern are the

search space sizes in which the genetic algorithm will search to discover rule tables that promote

self-replicating behavior. A new paradigm for automata input, called component-sensitive input, is

introduced which signi�cantly reduces the search space size (in both cellular and e�ector automata

models), while preserving the desirable properties of the model. By reducing the search space
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size, search techniques, like the genetic algorithm can discover more rule tables that promote self-

replicating behavior. Chapter 4 presents the detailed design of a genetic algorithm for the automatic

discovery of self-replicating structures, the �rst such design to be reported. The problem of deriving

�tness functions that promote self-replicating behaviors is shown to be a di�cult problem, and

novel solutions are given by deriving general �tness functions comprised of multiple criteria. To

describe self-replicating processes more formally than previous work in this area, a framework is

developed including a precise de�nition of a self-replicating structure. Chapter 4 also describes

how multiobjective optimization was accomplished by the use of a second GA, called a meta-

level GA. Chapter 5 presents the results and analysis of the experiments to automatically discover

self-replicating structures in both cellular automata and e�ector automata models. Representative

GA-discovered self-replicating structures are shown using varying seed sizes. Statistical signi�cance

measures of the experimental results, and GA performance curves are also described and analyzed.

Since this is �rst work to produce hundreds of self-replicating structures, a new classi�cation system

is devised to categorize the behavior of self-replicating structures. Chapter 6 contains a summary

of the results and suggestions for future work in this area.
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Chapter 2

Background and Previous Work

To better understand the results of this dissertation, this chapter brie
y reviews cellular space

automata models, self-replicating systems, genetic algorithms, and the relevant literature in these

areas.

2.1 Cellular Automata

Cellular automata (CA) are a class of discrete dynamical system models in which many simple

components interact to produce potentially complex patterns of behavior. CAs have been used to

model a broad range of natural phenomena and in engineering applications, for example: astro-

physical modeling [Perdang93], heart �brillation [Burks74], ecological processes [Hogeweg88], 
uid

dynamics [Frisch86], and image processing [Preston84].

In a cellular automata model, time is discrete, and space is divided into a lattice of cells, each

representing a �nite state machine or automaton. At each time-step, each automaton uses the same

function � or rule table1 to determine its next state as a function of its current state and the state

of neighboring cells. This set of neighboring cells is called a neighborhood, the size (n) of which

is commonly 3 cells in 1-D CAs, and 5 or 9 cells in 2-D models (see Figure 2.1). Note that, by

convention, the center cell is included in its own neighborhood. Each cell can be in one of k possible

states, one of which is designated the quiescent or inactive state. When a quiescent cell has an

entirely quiescent neighborhood, a widely accepted convention is that it will remain quiescent at

the next time-step.

The CA rule table is a complete2 list of transition rules that specify the next state for every pos-

sible neighborhood combination. In a 2-D, 5-neighbor model using the von Neumann neighborhood,

the individual transition rules would be of the form:

CTRBL! C0

which speci�es the states of the Center, Top, Right, Bottom, and Left positions of the neighbor-

hood's present state, and C0 represents the next state of the center cell. Using this neighborhood

with 2-state automata, consider the cellular automaton for the parity function shown in Table 2.1.

1This is frequently referred to as a \transition function", \transition rule" or simply \rule" in the CA literature,

but \rule table" will be used in this work for clarity.

2Rule tables are sometimes partially speci�ed by listing only the rules needed to enable a speci�c behavior.
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Figure 2.1: Common neighborhood templates in 1-D and 2-D CA: (a) 3-cell neighbor-

hood; (b) 5-cell von Neumann neighborhood; (c) 9-cell Moore neighborhood

States are represented by 0 and 1, and for each of the 25 = 32 neighborhoods a transition rule

is speci�ed. The next state is a 1 if the parity of the neighborhood cells is odd, and 0 if even.

Figure 2.2 shows the �rst three time-steps when the initial con�guration is a 5� 5 square pattern.

Also shown is the complex pattern that emerges at t = 22. If the space is not constrained, complex

patterns will continue to form and the structure will expand outward inde�nitely.

CTRBL C0

00000 0

00001 1

00010 1

00011 0

00100 1

00101 0

00110 0

00111 1

CTRBL C0

01000 1

01001 0

01010 0

01011 1

01100 0

01101 1

01110 1

01111 0

CTRBL C0

10000 1

10001 0

10010 0

10011 1

10100 0

10101 1

10110 1

10111 0

CTRBL C0

11000 0

11001 1

11010 1

11011 0

11100 1

11101 0

11110 0

11111 1

Table 2.1: Parity rule table for 2-state, 5-neighbor cellular automata. There are 32 tran-

sition rules that comprise this rule table.

The underlying space of CA models is typically de�ned as being isotropic, meaning that the

absolute directions of north, south, east, and west are indistinguishable. However, the rotational

symmetry of cell states is frequently varied. Strong rotational symmetry implies that all cell states

are unoriented, meaning that each neighbor to a cell has no special absolute nor relative position.

Weak rotational symmetry implies that at least some of the cell states3 are directionally oriented,

meaning that the cell designates speci�c neighbors as being its top, right, bottom, and left neigh-

bors. For example, the cell state designated " in von Neumann's work is weakly-symmetric and

thus permutes to di�erent cell states !, #, and under successive 90� rotations. It represents one

oriented component that can exist in four orientations. In the parity rule of Table 2.1, both states

(0,1) are strongly rotation symmetric. In CAs that contain both weak and strong rotationally sym-

3The quiescent state is always a strongly rotation symmetric cell state and is thus included in CA models with

weak rotational symmetry.
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Figure 2.2: Parity CA con�gurations for the �rst three time-steps, and at t=22. Individ-

ual cells are at a reduced scale in t=22. Axes are superimposed for frame of

reference.
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metric states, it is common to represent the \strong" states using symbols that appear rotationally

symmetric (e.g. �, +, �), and the \weak" states using symbols that are not rotationally symmetric

(e.g. ", A, L).

In addition to isotropic spaces, non-isotropic spaces are also possible. In a non-isotropic space

one direction is specially designated and is known to all automata. Thus every automaton has

exactly the same orientation and senses an \absolute north" direction. A diagram summarizing the

relationships of the models described above in shown in Figure 2.3.

Cellular Space
Automata Models

Non-Isotropic Isotropic

Strong Rotational
Symmetry

Weak Rotational
Symmetry

Figure 2.3: Dichotomy of cellular space automata models with respect to the underlying

cellular space.

2.2 Self-replicating Structures in Cellular Space Models

2.2.1 Cellular Automata Models

A self-replicating structure in a cellular automata model is informally de�ned as follows. In the

CA model, one state is designated the quiescent state, and the remaining states are considered

active. A self-replicating structure is represented as a con�guration of contiguous active cells, each

of which represents a component of the machine. At each discrete time-step, each automaton

(cell) uses an identical rule table to determine its next state as a function of its current state and

the state of its immediate neighbor cells. Based solely on these concurrent local interactions, an

initially speci�ed structure (at time t = 0) goes through a sequence of steps to construct a duplicate

copy of itself. The replica can be displaced and perhaps rotated relative to the original at a later

time t0. A two-dimensional cellular space model illustrating this is shown in Figure 2.4. In this

particular example, cell-states are integers, and the quiescent state (0), is depicted by an empty

cell for clarity. The other states (1, 2, 3) are shown forming a �ve-component structure (t = 0)

which then self-replicates over time and produces a replicant at a later time (t = t0).

The type of self-replication described above is technically asexual reproduction: an o�spring is

an exact copy of the parent. Sexual reproduction in CA, mentioned in the next section (page 20)

with respect to a previous work, is beyond the scope of this thesis.

The mathematician John von Neumann conducted research on self-replicating automata be-

tween 1948-1953 [von Neumann66]. Since he was the �rst person to formally study these systems,
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Figure 2.4: Illustration of a self-replicating structure in a 2-D cellular space model.

it is interesting to point out his motivations. In [Burks70] it is suggested that von Neumann was

envisioning a systematic theory of natural and arti�cial automata, mainly because he believed that

designing complex systems (e.g. large-scale computers) would be di�cult without such a theory.

In [McMullin92b] it is asserted that von Neumann was primarily interested in spontaneous growth

of complexity (particularly through Darwinian evolution) and that studying self-replication was a

suitable means to this ends4.

Von Neumann conceived of �ve models of self-replication: kinematic, cellular, excitation-

threshold-fatigue, continuous, and probabilistic [von Neumann66]. The kinematic model was the

forerunner to the cellular model. Stanislaw Ulam suggested the cellular model during a discussion

of the kinematic model since it was thought the cellular framework would be more suitable to math-

ematical and logical analysis. Because of this, the cellular automata model became the only model

formally researched by von Neumann, and was used to design the �rst logical automaton capable

of directing its own replication. An overview of this design is shown in Figure 2.5. It consisted of a

two-dimensional array of cells, each of which could be in one of 29 states (29 was the least number

of states he could devise). A group of cells that comprised the \construction-arm" functioned to

construct a new automaton. The tail-like \tape" contained the instructions that speci�ed how to

build the new structure. Since the machine would construct any con�guration speci�ed on the

tape, von Neumann's machine is said to be construction universal. Thus, when the instructions on

the tape specify how to build a copy of itself, self-replication can proceed.

One measure of the complexity of von Neumann's logical machine is to count the number of

29-state cells that comprise the self-replicating entity. Estimates range from 40,000 { 200,000 cells.

This high degree of complexity seemed to be consistent with the remarkable complexity of biological

self-replicating systems. However the research of E. F. Codd and Christopher Langton reported

simpler self-replicating structures in CA. Codd produced a sheathed loop structure embedded in

an 8-state, 5-neighbor, 2-D CA [Codd68]. Langton took a component of Codd's structure and

made further reductions. He describes an 8-state, 86-component, sheathed-loop self-replicating

structure [Langton84] depicted in Figure 2.6(a). In [Byl89], an even smaller 6-state, 12-cell self-

4The work presented in this thesis is very much related to this theme since genetic algorithms, which are based

on biological evolution, are used extensively.
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Figure 2.5: Overview of von Neumann's design for a self-replicating automaton

(from [Burks70]).

replicating loop is presented (see Figure 2.6(b)).

 XXXXXXXX
X0+ 0L 0LX
X XXXXXX X
X+X    X0X
X0X    X0X
X X    X0X
X+X    X0X
X0XXXXXX0XXXXX
X +0 +0 +00000X
 XXXXXXXXXXXXX

 XX
XLOX
XL+X
 X*

(a) (b)

Figure 2.6: Initial con�gurations of self-replicating loops: (a) 8-state, 86-component

structure of Langton; (b) 6-state, 12-component structure of Byl.

Subsequent research [Reggia93] has shown that even simpler, non-trivial self-replicating struc-

tures do exist. For example, Figure 2.7 shows structure UL06W8V, so named because it: is an

unsheathed loop (UL), is comprised of six components, uses weak rotational symmetry, is embed-

ded in a model in which each cell may be in 1 of 8 states, and uses the von Neumann neighborhood.

The partial rule table that governs its self-replication process used only 20 rules. The structure

that undergoes self-replication is seen at t = 0 in Figure 2.7(a). At t = 8 the �rst replicant can

be seen detached from the original structure. Then these two structures each begin a process of

self-replication until several time-steps later, a diamond-shaped colony has formed. The center of

the colony contains inactive groups composed of four cells each, while the perimeter continues to

expand inde�nitely.

Related to the previous work are the sexually-reproducing CAs of Paul Vit�anyi. Using an 8-
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Figure 2.8: Automaton in Arbib's CT-Machine model.

state, 5-neighbor CA model similar to Codd's, he was able to produce two structures capable of

sexual reproduction [Vit�anyi73]. He argues that in transitioning from asexual to sexual reproduction

requires a change in the number and structure of instruction tapes. He creates M-type (male) and

F-type (female) automata, each containing two, nearly identical instruction tapes. Although his

automata are quite complex, he shows that sexual reproduction of automata is possible, and that

the recombination process is similar to that of nature.

2.2.2 Arbib's Model

In the mid-1960s, Michael Arbib observed that the large degree of complexity of von Neumann's

and Codd's self-replicating automata could be greatly reduced if the fundamental components

were more complex [Arbib66, Arbib69a]. His rationale for doing this was to adopt a hierarchical

approach, where his automata would be analogous to cells, as opposed to macromolecules. He

created a version of the 2-D cellular space automata model called Constructing Turing Machines,

or CT-machines [Thatcher70]. Each cell in this space contains a �nite-state automata that execute

short 22-instruction programs (see Figure 2.8). The instructions consist of actions such as weld

and move, and internal control constructs such as if/then and goto. Self-replication occurs when

individual CT-machines copy their instructions into empty cells. Structures composed of multiple

CT-machines are able to move as one unit since individual automata can be welded to each other.

Using elements from the CT-machine model, Arbib also describes [Arbib67] the Mark II cellular

space model. In this model, automata are capable of dividing into two automata or self-destruction,

and cells in the cellular space are either empty or occupied by an automaton (as opposed to having a

quiescent state). The new cellular space model presented in Chapter 3 retains these three properties,

however the automata are much simpler than CT-machines.

2.2.3 Holland's Model

In the mid-1970s John Holland explored automatic discovery of self-replicating automata by focus-

ing on spontaneous emergence of such structures. He developed a theoretical framework and sought

to provide existence proofs for the spontaneous emergence of a class of arti�cial self-replicating
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systems [Holland76]. Holland de�nes a set of model \universes" containing abstract counterparts

to rudimentary chemical and kinetic mechanisms such as bonding and movement. He wanted to

loosely model natural chemical processes (di�usion, activation) acting on structures composed of

elements (nucleotides, amino acids) to show that even with random agitations, the tendency of

such a system would not be sustained randomness, but rather, life \in the sense of self-replicating

systems undergoing heritable adaptations."

Although these �-Universes, as they are called, are termed cellular automata models in Holland's

paper, they actually have little in common beyond discretized time and space. The concept of a state

is represented by elements that are logical abstractions of physical entities (e.g. atoms) and obey

the conservation of mass. In Figure 2.9 a 1-dimensional example �-Universe is shown along with a

table of elements and \codons". Elements are the fundamental units, and codons encode elements

(the analogy is that of amino acid triplets encoding protein sequences). Many interactions among

the elements are strictly local as in CA, but some are localized to aggregate structures (strings of

bonded elements). The elements themselves can be thought of as automata during the �rst of three

\phases" of each discrete time-step. However, during the second and third phases, they are acted

upon by the physics of the �-Universe. Holland calls these forces \operators" and de�nes four:

bonding, movement, copy, and decode. Because of these global operators, it would be impossible

to specify a CA-type rule table for an �-Universe. As an example, the \copy" operator would be

activated if the sequence -0:e1e2 � � � el- formed (ei being one of the three elements), and it would

cause elements to be reshu�ed so that a codon-encoded copy of the string e1e2 � � � el would be

assembled.

Element

0

1

:

Codon

N0N0
N1N0

N1N0

0 : 1 N0 N1- 10 0 - - - 0 : ••••••

Figure 2.9: An example of a few cells from an �-Universe

Holland parameterizes important aspects of the �-Universes and then uses these to derive

formulas that predict structure lifespans, population densities, and certain event probabilities. One

of those predictions is an expression for the expected time required for emergence of a self-replicating

system. Substituting reasonable values for the parameters, a waiting time of 1:4� 1043 time-steps

is computed [Holland76, pg. 399]. Since this is a tremendous number (there are roughly 1017

seconds in 10 billion years), it can be said to never produce self-replicating entities. Relaxing the

requirement from fully self-replicating to partially self-replicating, a similar expression is derived.

Again substituting reasonable parameter values, this time a waiting period of 4:4� 108 time-steps

(4:4�108 seconds is about 14 years) is the result. Since this is a reasonable amount, it lends credence

to spontaneous emergence of self-replicating structures in general, given that Holland's model and

derivations are accurate. No computer simulations of Holland's model were published until very

recently, even though such simulations were quite feasible (as the 4:4 � 108 time-step experiment
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shows). In [McMullin92a], an empirical investigation into Holland's work is reported. There it

is claimed that some of the conjectures in Holland's model were 
awed since experimental results

showed that the self-replicating structures would go extinct after modest time periods. Regardless

of whether the original analysis is valid, it remains one of the only studies of its kind reported to

date and raises important theoretical questions regarding emergence of self-replicating structures.

2.2.4 Summary of Self-Replicating Automata

As a summary of work done thus far and for comparison purposes, Table 2.2 lists the models and

relevant data concerning self-replicating automata research. Rotational symmetry is listed since it

is a signi�cant variation of the models shown. The neighborhood sizes 5 and 9 correspond to the

von Neumann andMoore neighborhoods, respectively. The sizes of the self-replicating structures are

measured in cells, and are frequently rough estimates since many systems were never implemented.

Year Model

Type

Dim. Rot.

Sym-

metry

States

per

cell

Neigh-

borhood

size(s)

Struc-

ture

size(s)a

Reference

1951 CA 2D weak 29 5 > 104 [von Neumann66]

1965 CA 2D strong 8 5 > 104 [Codd68]

1966 CT-Mach. 2D weak � 10100 5 � 102 [Arbib66]

1973 CA 2D strong 8 5 > 104 [Vit�anyi73]

1976 �-Univ. 1D strong 5 -b (60)c [Holland76]

1984 CA 2D strong 8 5 86 [Langton84]

1989 CA 2D strong 6 5 12 [Byl89]

1993 CA 2D both 6,8 5,9 5{48 [Reggia93]

aMany systems were never implemented, so some values are broad approximations.
bNo �xed neighborhood size.
cTheorized, neither proven nor implemented.

Table 2.2: Summary of self-replicating automata research.

It is important to remember that all of these self-replicating structures were hand designed.

Although Holland's model could potentially automatically identify self-replicating structures, no

proof of this has been given.

2.3 Genetic Algorithms

A genetic algorithm (GA) is a stochastic search and optimization technique based on ideas from nat-

ural genetics and evolution. Genetic algorithms were originally introduced by John Holland [Holland75].

In recent years GAs have become increasingly popular in engineering design, machine learning,

and other areas because they perform well in a wide range of applications [Davis91]. For ex-

ample, GAs have been applied to circuit design [Shahookar90], neural network design [Harp91],

robot control [Davidor91], DNA sequence assembly [Parsons93], and protein-structure predic-

tion [Dandekar92].
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The solution space or search space for a given problem is a set of points representing all possible

solutions. For each potential solution we can imagine a \�tness landscape" where valleys mark

the location of poor solutions and the highest point corresponds to the best possible solution.

For complex problems, solution spaces are usually enormous5, and contain convoluted topological

features. GAs e�ectively comb the solution space and home-in on promising regions by combining

partial solutions in ways analogous to how biological genes have evolved. However, like other

stochastic techniques, there is no assurance that the GA will converge to the global optimum.

When applied properly, GAs are robust and generally good at �nding \acceptably good" solutions,

especially when dealing with extremely large search spaces.

A GA works by manipulating a pool or population of candidate solutions called chromosomes.

Each chromosome is assigned a �tness value using a �tness function according to how well it solves

the problem at hand. Highly �t chromosomes are given the opportunities to cross-breed with other

members of the pool. Thus o�spring are produced, and a new population of candidate solutions

is formed with generally a higher proportion of good characteristics than the previous population.

Each successive population is called a generation, and the GA continues in this fashion until a

speci�ed convergence criteria is satis�ed. This process is summarized in Figure 2.10.

initialize population of chromosomes

evaluate �tness of each chromosome

while (termination criterion not reached) do

select parent chromosomes for mating

apply crossover and mutation to produce children

evaluate �tness of each chromosome

end

Figure 2.10: Traditional genetic algorithm.

2.3.1 Genetic Operators

The key mechanisms in the GA are the genetic operators: �tness-based reproduction, crossover, and

mutation6. To illustrate their use, consider designing a GA to �nd the global maximum of a function

f(x; y). Since chromosomes are frequently encoded as binary strings, x and y are represented as

10-bit numbers giving a chromosome of 20 bits as shown in Figure 2.11(a). A population of

such chromosomes is generated randomly and seen in Figure 2.11(b). Then for each chromosome

�tness values are computed using the �tness function f . These values are shown adjacent to the

chromosomes in Figure 2.11(c). Based on these �tness values, pairs of chromosomes are selected to

undergo crossover and mutation to produce the next generation.

It has been argued that the GA derives most of its strength from recombination of partial

solutions through the action of crossover. Crossover takes two chromosomes and cuts them into

5For example, in a typical chess game, there are about 1060 strategies possible [Holland92].

6Other operators are known, however only those used in this thesis are discussed here.
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f(x,y) 101 1 1 110 0 00 0 0 0 111 0 01

x y

(a)

101 1 1 110 0 00 0 0 0 111 0 01

111 1 1 110 1 01 0 1 1 001 0 00

000 1 1 111 0 01 0 0 1 100 0 11

0.41 101 1 1 110 0 00 0 0 0 111 0 01

111 1 1 110 1 01 0 1 1 001 0 00

000 1 1 111 0 01 0 0 1 100 0 11

0.32

0.53

(b) (c)

Figure 2.11: Examples of 20-bit chromosomes: (a) single chromosome encoding x and y;

(b) randomized initial population before computing �tness function for each

chromosome; (c) same population with �tness values.

two pieces at some randomly chosen point, producing two head and two tail segments. The tail

segments are then interchanged to produce two new chromosomes (Figure 2.12(a)). After crossing-

over, mutation is applied to each child chromosome by complementing randomly selected bits (Fig-

ure 2.12(b)). Crossover and mutation are applied probabilistically so that, for example, crossover

may not be applied to a given pair of chromosomes7. Typical values for crossover and mutation

probabilities are 0:6{1:0 and 0:001{0:2, respectively.

10100100100110111010

10111000110101110001

crossover
point

1010010010

1011100011 0110111010

0101110001

10100100100101110001

10111000110110111010

two
parents

two
children

crossover

10100100100110111010

mutation
point

10100100100010111010

child

mutated
child

(a) (b)

Figure 2.12: Genetic operators: (a) single-point crossover; (b) single point mutation.

As seen in the example of Figure 2.11, before applying a GA to a given problem, the GA designer

must �nd a suitable way to encode solutions so that the genetic operators can act on them. This

task is called the encoding or representation problem, and can be di�cult to solve since it is speci�c

to the application domain. A binary encoding scheme was chosen in Figure 2.11 since binary

representations are commonly chosen and work well in many applications. Other representation

7In such a case the children are duplicates of the parents.
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options include many-character, real-valued, and tree encodings. In addition, the natural encoding

(i.e., how the problem is presented to the computer before the GA is applied) of a problem has

may also work well. At present there is no one method of representation that performs best for all

problems.

2.3.2 GA Theory

The fundamental mechanism of a GA is its manipulation of a special class of building blocks called

schemas. A schema [Holland75] is a template that describes a subset of strings with similarities

at certain string positions. For a problem encoded with the binary alphabet 0,1, a schema is

represented as a string containing the symbols f0; 1; �g, where the asterisk represents a \don't

care". A schema matches and thus represents a particular string if in each position the schema

contains a 0, the string contains a 0, and in each position that the schema contains a 1, the string

contains a 1. For example, for strings of length 4, the schema *101 matches the two strings f0101,

1101g. As another example, the schema 0***1 represents the set of all bit strings of length �ve

that start with a 0 and end with a 1.

The bene�t of schemata is that they provide a compact way to represent important similarities

among strings with high �tnesses. A string of length l is a member of 2l di�erent schemata since

each position may contain its actual value or a don't care symbol. Therefore, a population of size n

contains between 2l and n�2l schemata. The GA works to increase the growth of important schemata

through reproduction, crossover, and mutation. Since strings with higher �tness functions have a

higher probability of being selected, as the genetic algorithm progresses, on average an increasing

number of samples contain schema with high �tness. Since crossover may disrupt schemas of large

length, genetic algorithms have the result of propagating short schemata of high �tness.

There are many variations on the way in which crossover may be performed. Two-point,

multiple-point, and uniform crossover operators have been devised and met with success. These

techniques essentially add more crossover points at which to swap segments. The reasoning be-

hind this has to do with the fact that single-point crossover cannot combine certain schemas. For

example, an instances of schemas 1********111 and ****1******* cannot be combined to form

1***1****111.

2.3.3 Rule Discovery Using GAs

In this section two studies involving rule discovery using genetic algorithms in CA are brie
y

described. A third important research study can be found in [Je�erson91]. These are brie
y

mentioned since they are evidence that genetic algorithms can be used successfully in �nding high-

performance CA rules that yield a desirable emergent phenomena.

The �rst study describes a method where CA rules are extracted directly from experimental data

using a genetic algorithm [Richards90]. The idea was to evolve a CA whose resulting space-time

patterns closely reproduced the solidi�cation of NH4Br from a supersaturated aqueous solution.

The model used was a 2-dimensional, 2-state, probabilistic CA with an interesting neighborhood

template: in addition to the 5-neighbor von Neumann neighborhood, the authors used an elaborate

neighborhood template consisting of additional neighborhood sites as well as previous neighbor-

hood sites. A genetic algorithm was used to search for CA rules. To calculate �tness of a given

rule, sequences of digitized images photographed during solidi�cation were compared to candidate

rules based on how well the CA's next values correlated to past and present values. The authors
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reported encouraging results: the genetic algorithm was able to discover CA rules that qualitatively

reproduced the dynamical patterns of the solidi�cation process.

The second study involved using a genetic algorithm to discover CA rules for emergent global

computation [Mitchell93]. The speci�c task chosen (called the �c = 1=2 task) concerned density

classi�cation: given a 149-cell, 2-state, radius 3 neighborhood, 1-dimensional CA model with a

random initial con�guration (IC), the CA should become all 1s as quickly as possible if the IC is

comprised of more than half 1s (analogously for 0s). This problem is trivial for a computing system

with global information available, but quite di�cult when only local information is available. The

authors use a genetic algorithm to discover CA rules that excel at this task, and report �nding

rules that are 65%-77% accurate8. Some of the evolved strategies relied on the presence of large

blocks of 1s or 0s as predictors. The innovative strategies focused on large space-time distances to

do the computation since communication throughput among cells is limited by locality.

8During the writing of this thesis, a genetically evolved rule with 82% accuracy was reported in [Andre96].
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Chapter 3

E�ector Automata

This chapter presents a new cellular space automata model called E�ector Automata (EA) [Lohn95].

The EA model was created in order to have a model whose behaviors would more closely resemble

physical systems and characteristics of mass-preservation physics as compared to cellular automata,

while retaining many of the desirable properties of cellular automata, such as strictly local inter-

actions among simple rule-based automata, emergent behavior, and massive parallelism. The EA

model retains many of the desirable properties of cellular automata models, such as strictly lo-

cal interactions among simple rule-based automata, emergent behavior, and massive parallelism.

However, it more closely resembles physical systems by directly incorporating movement and char-

acteristics of mass-preservation physics. It is shown that the EA model has the following advantages

over conventional cellular automata models, especially regarding the development of self-replicating

structures. First, because the EA model can incorporate aspects of mass-preservation physics, emer-

gent structures in EA simulations have a higher degree of realism than those of other models. In

each EA cell, a new state can only be created as a result of cell division, whereas other models gen-

erally allow spontaneous creation of arbitrary cell states. Second, by incorporating movement and

automaton division, the EA model is better suited to studying self-replicating systems. This will

be discussed further in Chapter 4. Third, simulation of the EA model is shown to be signi�cantly

less resource intensive, and hence more computationally feasible, especially as the number of states

increases. This is of great signi�cance when evolving behavior through simulated evolution in such

models since the computational requirements far exceed resources typically available, including the

use of present-day supercomputers.

The E�ector Automaton model derives its name from the fact that each automaton can e�ect

changes to neighboring cells (primarily through cell movement), whereas in most cellular space

models, a given automaton simply changes its own state at each time step. This property is

illustrated in Figure 3.1 where a single active cell is seen moving one cell to the right. The cell's

original neighborhood consisting of �ve cells is shown outlined. At t+1 the rightmost neighborhood

cell is changed as a result of the center cell moving to the right. If this were a cellular automaton,

the center cell could only change its own state, and not that of neighboring cells. Note however

that the behavior illustrated in Figure 3.1 can also be produced by a cellular automaton with a

di�erent mechanism (the right neighbor changes its state). In the general case, it is always possible

to construct a CA that can simulate a given EA. However, as shown later, the CA will typically

require a rule table that is much larger than that of the EA. This is a signi�cant drawback from a

computational perspective.

The EA model was inspired from observing the fundamental mechanisms employed by self-
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t t+1

A A

Figure 3.1: Example of a single active EA cell at time t in
uencing a neighboring cell at

t+ 1 by moving to the right.

replicating structures in previous CA models. The key mechanisms observed were that of automata

movement, automata division, and automata self-destruction. By codifying these primitives directly

into condition-action rules, the automata execute actions instead of state transitions. Thus, EA

automata are thought of as being closer to physical machines than to information processors.

Although the EA model was not speci�cally designed to be biologically realistic, it is interesting to

note that the actions mentioned above all have biological counterparts. Cell division (mitosis), cell

locomotion, and programmed cell death (apoptosis) are processes that biological cells are capable

of performing.

Movable Automata

An alternate way of viewing the EA model is from the perspective of movable automata. From

this perspective, active EA cells contain �nite state machines capable of moving, and inactive EA

cells are empty space. In contrast, each cell of a CA model contains a �xed �nite state machine:

active cells are those automata in non-quiescent states, and inactive cells are in the quiescent

state. Cellular space automata models emphasizing actions, especially movement actions, have

been investigated previously, and are brie
y discussed next.

The �rst models that included movable automata were the kinetic automaton of von Neu-

mann [Burks70] and the CT machines of Arbib [Arbib66]. These models included �nite state

automata capable of movement and other actions such as joining (called fusing or welding) and

dis-joining. The Movable Finite Automata (MFA) model [Goel89] attempts to model biochemical

processes such as self-assembly of bacteriophages and polypeptide chain growth in protein biosyn-

thesis. MFA automata are characterized by their ability to move and allow bond formation and

disocciation. The Computational Metabolism (ComMet) class of models [Lugowski89] consists of

automata called \tiles" that move about on a 2-D grid. Tiles are grouped into di�erent species, in

which tiles of the same species execute the same rules. A tile is capable of sensing and acting upon

neighboring tiles. For example, two neighboring tiles may both agree to swap places. The Crea-

tures model [Stephenson92] consists of automata occupying a 2-D cellular array. Each automata

is capable of moving, producing o�spring, self-destruction, and changing its rules. A distinguish-

ing property of Creatures is that multiple automata are permitted to occupy the same cell. Also,

automata cannot sense their surrounding neighbors { they can only sense other automata that are

co-located. The Creatures model has been used to model ideal gases and disease transmission.

30



Lastly, a model of movable automata for use in simulating biochemical reactions of oligonucleotides

has been reported [Chou94]. In this model, automata represent molecules and are governed by rules

derived from chemical reactions. The automata are capable of movement, rotation, and bonding,

which permits aggregate structures to form. Using this model, self-replicating oligonucleotide sys-

tems were simulated and found to compare favorably with laboratory experiments.

Cellular automata models are capable of simulating movement of single cells or of aggregate

structures. The famous game of Life rule table [Gardner70] is one such example where multi-cell

propagating structures may be seen. The concept of hierarchies of structures (called virtual state

machines) forming, moving, constructing, etc., in CA models has also been investigated [Langton86].

Automata Complexity

As described in the previous chapter, Arbib created a new cellular space model with more complex

cells than that of cellular automata [Arbib66]. His rationale for doing so was twofold. First, he

wanted to adopt a hierarchical approach where his automata would be analogous to higher-order

structures than in CA. Second, by adding complexity to each automaton, he felt that the complexity

of the self-replicating structure could be greatly reduced. He was successful in designing a much

simpler self-replicating structure using less cells and a more straightforward design than that of

von Neumann. However, his automata each have on the order of 10100 states, which is signi�cantly

larger than previous models. Presumably some of this complexity is due to his requirement of

universal computation and construction.

The EA model, like Arbib's, adds complexity to individual automata. However, rather than

using an automaton having on the order of 10100 states, EA cells typically have 10{20 states, a

range comparable to previous CA-based self-replicating structures. Thus on the scale of automata

complexity for cellular space models, the EA model is positioned close to traditional CA models as

compared to Arbib's model.

Outline

The remainder of this chapter is organized as follows. The EA model is �rst formally de�ned.

Its theory is then developed, including a set of axioms that guarantee self-replication. Growth

theorems are presented as well as a comparison to the standard cellular automata model.

3.1 Model De�nition

The EA model is formally de�ned in this section. Of particular interest is the model's ability

to support self-replicating structures, and the limits on the growth of such structures. Since the

EA model shares many of the same properties as the CA model, much of the same terminology

and de�nitions can be applied to both models1. Speci�cally, the notation of [Codd68] is used

where appropriate, and the notation in [Lohn95] has been modi�ed slightly for consistency. The

generalized EA model is described in this section, and the speci�c form of it used to study self-

replicating structures is described in section 4.1.

1The CA model is described in Section 2.1 on page 15.
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3.1.1 Cellular Space

The EA model is a spatially-distributed, deterministic dynamical system which iterates in discrete

time. Space is an in�nite, isotropic N -dimensional lattice of cells. Cells are either empty or

occupied by at most one automaton. The position of a cell with respect to an arbitrarily chosen

origin is denoted �. Automata are �nite control automata capable of executing one action from a

set of actions A at each time-step. Automata receive input from a �xed set of local cells called the

neighborhood. The set A allows any �nite number of designer-speci�ed actions, provided that each

a�ects only neighborhood-local cells as a result of its execution.

Individual automata are classi�ed according to their component type, v̂, a notation adapted from

the CA cell state v. A component represents the set of weakly symmetric cell states obtained under

successive orientations of the cell. For example, in a 2-D model, an A component type represents

the four cell states A,
A
,

A
, and A. The set of all component types de�ned for an EA model is

V̂ = fv̂1; v̂2; : : : ; v̂cg, containing c distinct component types. The component type of a cell located

at position � is denoted v̂(�). Since the EA model also allows for strongly rotation symmetric cell

states, the set Vs = fv0; v1; : : : ; vks�1g denotes such cell states, where ks is the number of cell states

with strong rotational symmetry, and cell state v0 is distinguished as the quiescent state as is done

in [Codd68]. In the same manner, Vw is the set of kw weakly rotation symmetric cell states. As in

the CA literature, k denotes the total number of cell states in the EA model (i.e., cell states with

both strong and weak rotational symmetries), such that

k = ks + kw (3.1)

In keeping with CA notation, the set V contains all k cell states (jV j = k) and is given by

V = Vs [ Vw (3.2)

Calculation of the number of cell states in an EA model when the number of components is known

is given by

k = �c+ ks (ks � 1) (3.3)

where � represents the number of coordinate system rotations permitted in the space (for example,

� = 4 for a 2-D model having 4 90� rotations). Typically ks = 1 since the empty cell is equivalent

to quiescent cell state in computing k. Although it is generally more useful to speak of components

with respect to the EA model, it is sometimes convenient to use states instead, and so both terms

may be used keeping in mind Equation 3.3. To illustrate these sets, consider an example EA

model having � = 4, two component types (c = 2) and two strongly rotation symmetric cell states

(ks = 2). The automata in such a model could be written

V̂ = fL; "g (jV̂ j = c = 2)

Vw = fL,
L
,

L
, L; ";!; #; g (jVwj = kw = 8)

Vs = f�; �g (jVsj = ks = 2)

V = f�; �; L,
L
,

L
, L; ";!; #; g (jV j = k = 10)

where the � is strongly rotation symmetric and � represents the empty/quiescent cell state.
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3.1.2 Con�gurations

De�nition 3.1 A con�guration C is an allowable assignment of states to cells in the cellular space.

A sequence of con�gurations (sometime called a simulation or propagation) is generated as the

space iterates over time:

C0; C1; : : : ; Ct; : : : (3.4)

with C0 denoting the initial or seed con�guration. The set of all non-empty cells in a con�guration

C is known as the support, denoted supC, and is de�ned as

supC = f� 2 C j v(�) 6= v0g (3.5)

Two con�gurations C and C 0 are disjoint if

supC \ supC 0 = ; (3.6)

C 0 is a subcon�guration of C if supC \ supC 0 = supC 0. The number of components of type v̂ at

time t in con�guration Ct is called the multiplicity of v̂, and is denoted M t
v̂. Summing multiplicities

over all c component types, the total number of component-occupied cells is

j supCtj =
X
v̂2V̂

M t
v̂ (3.7)

Calculation of the multiplicity M t
v̂ plays a critical role in deriving the genetic algorithm �tness

functions discussed in the next chapter.

De�nition 3.2 A con�guration S is a structure if the following are satis�ed:

1. All cells in S are non-quiescent, i.e.

S = supS (3.8)

2. It is possible to reach any cell in supS from any other cell in supS by traversing neighborhood-

adjacent supS cells.

In this manner a structure is seen as a set of contiguous non-empty cells. Figure 3.2 shows four

examples illustrating this de�nition. If the initial con�guration is a structure, then it is called a

seed structure, S0. A given structure at time t, St, may not retain the properties of a structure

at a later time t0, however it may be desirable to associate its original cells, which now form a

subcon�guration, with St. Such a subcon�guration is called a metamorphosing structure and is

denoted by ~St.

De�nition 3.3 A metamorphosing structure ~St is a set of cell states that forms a structure St at

time t, potentially changes shape from t+1 through t0, and is identi�able as the original structure

at t0+1, i.e. St = St0+1.

This de�nition is used in de�ning a self-replicating structure in Section 4.3, and is useful since

many structures may temporarily change size or shape while moving or evolving, and re-form the

original structure at a later time.

33
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Figure 3.2: Examples illustrating the de�nition of structure: three structures in the

Von Neumann neighborhood and one structure in the Moore neighborhood.

3.1.3 Rules

Each automaton in the EA model is governed by a rule table � which induces a mapping of

neighborhood states onto itself. Each entry in � corresponds to a condition-action rule of the

following format:

neighborhood pattern ! action

The set of actions A is comprised of any set of instructions which modify the local neighborhood

upon the next time step. The NULL action, which does not change any cells, may also be included in

A. As an example, A may contain actions to move, rotate, duplicate, and/or create new automata.

The number of distinct actions in A is computed as follows for a k-state, n-neighbor EA. Since each

cell may be occupied by one of k cell states, the number of possible actions is

jAjmax = kn (3.9)

Equation 3.9 gives an upper bound on the number of allowed actions. In practice, however, the set

of actions is typically far less than the upper bound. For example, in the main EA model studied

in this thesis, jAj = 210, whereas the upper bound for this model is jAjmax ' 400; 000.
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NULL
t t+1

DESTRUCT
t t+1

A AA

MOVE/ROTATE
t t+1

ROTATE
t t+1

A A

A

A

DIVIDE/ROTATE
t t+1

BECOME
t t+1

A A

A

C

A

Figure 3.3: Examples of six actions in a 2-D EA model using the 9-cell Moore neighbor-

hood.
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To give an overview of the range of actions that A could contain, Figure 3.3 contains examples

of six representative actions. The names of the actions appear below each diagram, and in some

case directional parameters are implied. For example, the MOVE action requires a relative direction

parameter specifying the direction in which to move. Also note that the ROTATE action is combined

in some cases for convenience (actions may be composite actions the EA model de�nition).

3.1.4 Cell Contention Resolution

Because automata actions can modify neighboring cells, the situation arises in which more than one

automata may attempt to co-locate at the same cell, causing contention for that cell. As illustrated

in Figure 3.4, components A and B are separated by one cell and arrows indicate that both have

rules directing them to move into the same cell. Since the EA model, like the CA, prohibits cells

from having more than one automata, a cell contention policy is required. An example of such a

policy is mutual annihilation (as termed in [Codd68]) which results in all automata moving into

the same cell being destroyed. Another policy could be de�ned in which one of the contentious

automata is randomly selected to occupy the cell in question. Biases toward certain component

types could also be enforced.

A B

Figure 3.4: Cell contention occurs when two automata whose neighborhoods overlap at-

tempt to occupy the same cell in a 2-D 5-neighbor EA model.

A cell contention policy is a global property of the space similar to other properties such as

�xed propagation velocity and the limit on the actions allowed. Collectively, such properties are

analogous to physical laws of nature. The important point is that although these properties are

global, they are static, and thus the dynamics of the model are based solely on local interactions.

In contrast, some previous models of movable automata [Goel89], have relied on dynamic globally-

available information, which violates having strictly local interactions.

3.1.5 Summary of EA Notation

A summary of the notation used in the de�nition of the EA model is shown in Table 3.1. For

clarity, CA and EA designations are parenthetically noted when symbols are primarily used in a

particular model.
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Symbol Description

A set of actions (EA)

� position of cell

� number of coordinate system rotations

n neighborhood size

v; v̂ state (CA), component type (EA)

V set of cell states fv1; v2; : : : vkg

V̂ set of component types fv̂1; v̂2; : : : v̂cg

k number of cell states (CA)

c number of component types (EA)

ks number of strongly rotation symmetric cell states

kw number of weakly rotation symmetric cell states

Ct con�guration at time t

M t
v̂ multiplicity of component v̂ at time t

St structure at time t

S0 seed structure

~St metamorphosing structure

� rule table function

j�j number of entries in rule table

Table 3.1: Summary of EA model notation.

3.2 Component-Sensitive Input

A rule table compression method which has not been studied in the cellular space modeling lit-

erature is the technique of component sensitivity. For models that incorporate weakly rotation-

symmetric cell-states, it is possible to simplify the rule table function by modifying the way au-

tomata receive input.

In cellular space models to date, an automaton is sensitive to the states of its neighboring

cells, and uses this input to make a transition. This method of cell input is called state-sensitive

input (SSI). An alternative input technique is one in which an automaton receives only component

information from the cells in its local neighborhood. This is called component-sensitive input

(CSI). In SSI, the center cell senses both the component type and orientation of cell states in its

neighborhood, whereas in CSI, the center cell senses only the component types. Figure 3.5 shows

an example of a cell's input patterns under both SSI and CSI. There it is seen that the cell-state "

senses an L component having a �90� orientation below it (SSI case), and an L component without

orientation (CSI case).

Rule tables are reduced under component-sensitive input since there are far fewer permutations

of neighborhood patterns. This is a signi�cant advantage for reasons of increased computational

tractability and decreased search space sizes. In section 3.3.2 expressions for rule table sizes using

37



Cell-states: f�; �; L,
L
,

L
, L; ";!; #; g

Components: fL; "g

O

L

Input pattern under SSI:

! � L#

Input pattern under CSI:

" �L"

Figure 3.5: Example illustrating automata input sensitivity.

both CSI and SSI will be derived and compared. There it will be shown that SSI rule tables are

�n�1 larger than the equivalent CSI rule tables.

It should be remembered that component-sensitive input is only possible in cellular space models

having weak rotational symmetry. Since the EA model is de�ned to have weak rotational symmetry,

CSI may be used with any EA model. Cellular automata models with weak rotational symmetry

may also be speci�ed using this input method.

3.3 Comparison of CA and EA Models

In this thesis, both cellular automata and e�ector automata models are studied in the context of

supporting self-replicating structures. In this section certain comparisons are made between the

two models which are required to understand later results.

3.3.1 Model Equivalence

In comparing the EA and CA models to each other, it is useful to ask whether one model is more

general and can simulate the behavior of the other, and under what conditions this can occur.

In the generalized EA model, automata are a�orded a wide range of complexity and thus it is

not surprising that an EA model can be derived to simulate the behavior of any weakly rotation-

symmetric CA. Conversely, EA behavior can be designed into a CA provided that the complexity

of the transition function is increased su�ciently. These points are made in the following theorems.

Theorem 3.1 An e�ector automata model with a single BECOME action can simulate the behavior

of any weakly rotation-symmetric n-neighbor cellular automata model using an n-neighbor e�ector

automata model having a rule table of equal size.
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Proof: By inclusion of a BECOME action, the condition-action rule of an EA is equivalent to a state

transition of a �nite state machine. The BECOME action changes the automaton's current state to

any state in V . In a CA, the state transition rules are of the format: CTRBL ! C0. If each C0

is replaced by the BECOME C0 action, an equivalent transition rule of is formed in the EA model.

Since empty EA cells do not contain automata, CA quiescent cells are simulated by inclusion of a

cell-state having strong rotational symmetry. �

Before presenting the next theorem, some background on neighborhood functions [Codd68] is

necessary. The function g(�) generates the set of cells comprising the neighborhood of cell �

g(�) = f�; � + �1; : : : ; �+ �n�1g (3.10)

where �i(i = 1; ::; n � 1) are coordinates relative to � and n is the neighborhood size as de�ned

previously. As an example, the von Neumann neighborhood is expressed as

g(�) = f�; � + (1; 0); � + (�1; 0); � + (0; 1); � + (0;�1)g (3.11)

which generates the set of �ve cells: center, top, left, bottom, right.

In comparing the CA and EA models to each other, the concept of a second-order neighborhood

function is required. The second-order neighborhood of a cell � is the set of cells comprising the

neighborhood of � as well as the cells in those neighboring cells' neighborhood. This is expressed

as

g0(�) = g(g(�)j1) [ g(g(�)j2) [ � � � [ g(g(�)jn) (3.12)

where g(�)ji denotes the position of the ith cell of g(�). Figure 3.6 illustrates how the second-order

neighborhood is obtained from the von Neumann neighborhood.

original neighborhood addition of new cells union of cells forms
second-order neighborhood

Figure 3.6: Obtaining a second-order neighborhood from the von Neumann neighbor-

hood.

The second-order neighborhood function is required because, from a CA perspective, automata

located in a second-order neighborhood cell can a�ect the automata located in the center cell of the
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EA. In addition to actions, the cell contention policy (section 3.1.4) of the EA model can a�ect the

contents of a cell at each time step. For example, consider the cell shown highlighted in Figure 3.7.

In case 1, a B component moves left as governed by rule 2 and occupies the highlighted cell. The

other components execute NULL actions. In case 2, a C component is added which changes the D

component's behavior (it now uses rule 5 instead of rule 4). Because D and B attempt to occupy the

same cell, causing cell contention, they are both removed under the policy of mutual annihilation.

Thus the highlighted cell remains empty in this case, in contrast to the �rst case. This simple

example underscores the in
uence of components located in the second-order neighborhood.

t

B

t + 1

BDA A D

C C

BDA Acase 2:

case 1:

Partial Rule Table

1. A�D�� ! NULL

2. B���� ! MV LEFT

3. C��D� ! NULL

4. D���A ! NULL

5. DC��A ! MV RIGHT

Figure 3.7: Example behavior of the EA model illustrates how the addition of a C com-

ponent in case 2 in
uences the contents of the highlighted cell.

Theorem 3.2 In 2-D square tessellations, a cellular automata model with weak rotational sym-

metry can simulate the behavior of a 2-D n-neighbor e�ector automata using a neighborhood of

size n0 � 2n� 1 for integers n > 0.

Proof: The next state v(�) of an EA cell � is in
uenced by the cells in its second-order neighborhood,

g0(�). The number of cells generated by g0(�) is jg0(�)j, which is the size of the CA neighborhood n0.

The value n0 varies depending on the EA neighborhood size n and pattern of the EA neighborhood
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as follows:

jg0(�)j =

8>>>><
>>>>:

2n� 1 pattern p1
3n� 3 pattern p2
...

...

(z + 1)n� z(z � 1)� 1 pattern pz

(3.13)

where z is a positive integer which enumerates di�erent neighborhood patterns, and Equation 3.13 is

subject to the condition jg0(�)j > jg(�)j (this states that the second-order neighborhood may not be

smaller than the original neighborhood). From the set of functions generated by (z+1)n�z(z�1)�1,

the function that is bounded by all others (subject to the restrictions above), and hence minimal,

occurs at z=1 where the neighborhood size is 2n � 1. The pattern p1 corresponds to the linear

contiguous set of cells, examples of which are shown in Figure 3.8. Thus the lower bound on CA

neighborhood size is 2n� 1. �

n=2

n=3

n=4

n'=3

n'=5

n'=7

Figure 3.8: Examples of linear neighborhood patterns for various n, corresponding to p1
in Equation 3.13. All patterns which have minimal second-order neighbor-

hood sizes jg0(�)j. Second-order neighborhood patterns are shown hatched.

The rule table sizes of comparable n-neighbor k-state EA and CA models are both O(kn).

Applying Theorem 3.2 yields the ratio

O(j�jCA)

O(j�jEA)
=

O(kn
0

)

O(kn)
=

O(k2n�1)

O(kn)
' kn (3.14)

which implies that the rule table of a CA must be approximately kn times larger than that of the

EA, demonstrating a signi�cant increase in CA complexity is required.

3.3.2 CA Rule Tables and Search Spaces

The rule table size of a CA, j�j, is the number of individual state transitions in the rule table

function, and plays an important role in this thesis. A k-state, n-neighbor non-isotropic CA will

have a rule table containing j�j = kn state transition rules, corresponding to the the number of

length-n sequences of k unique objects, when each may be repeated any number of times. The set
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of all possible rule tables for a CA is denoted Dk
n. Since there are k possibilities for the next state

in each transition in a rule table, the number of possible rule tables is:

jDk
nj = kj�j (3.15)

Equation 3.15 is an expression for the size of the CA search space when trying to learn a rule table,

and is an important parameter when genetic algorithms are applied as a search technique. A search

space is a collection of candidate solutions to a given problem. In the context of designing a CA to

exhibit a certain behavior, Dk
n represents all possible candidate solutions and hence comprises the

entire search space. A related term, �tness landscape, refers to the quality of each of the candidate

solutions, where better performing solutions correspond to higher points. As an example, in a

6-state, 5-neighbor non-isotropic CA, there are j�j = 65 = 7776 rules and jD6
5 j = 67776 ' 106050

possible rule tables, an extremely large number. The size of this search space indicates it would be

impossible to exhaustively explore the space of all such D6
5 CAs.

As mentioned in Section 2.1, a given CA rule table can have weak or strong rotational symmetry

when the underlying space is isotropic. For isotropic spaces, jDk
nj becomes signi�cantly smaller as

compared to that of non-isotropic spaces. A reduction in rule table size occurs because redundant

transition rules may be removed due to symmetry conditions. This results from the removal of

redundant permutations. Under strong and weak rotational symmetries, in an n-neighbor CA only

n � 1 positions are relevant since the center cell has no de�ned symmetry relative to itself. Thus

for cell states with weak rotational symmetry, distinct permutations are counted using kn�1. For

strongly rotation symmetric cell states circular permutations are used to count distinct neighbor-

hood patterns, denoted kCPn�1. Recall that ks and kw represent the number of strongly and

weakly rotation symmetric cell states (k = ks + kw). Let j�sj be the number of strongly symmetric

transition rules, and j�wj be the number of weakly symmetric transition rules. Then,

j�sj = ks � kCPn�1 (3.16)

and

j�wj =
k � ks

�
� kn�1 (3.17)

where � represents the number of coordinate system rotations permitted in the space (for example,

� = 4 for a 2-D model having 4 90� rotations). For a CA model to have strong rotational symmetry,

all k states must have strong rotational symmetry. Thus k = ks, and the total rule table size is:

j�j = k � kCPn�1 (3.18)

In a weakly rotation symmetric model, at least one state (the quiescent state) has strong rotational

symmetry. With k = kw + ks and ks � 1, then the total rule table size is:

j�j = j�sj+ j�wj

= (ks � kCPn�1) +

�
k � ks

�
� kn�1

�
(3.19)

Combining equations 3.15, 3.18, and 3.19 yields expressions for the search space size under both

weak and strong rotational symmetries:

jDk
nj = k

(ks � kCPn�1)+
�
k�ks
�

�kn�1
�

(weak rot. symm.) (3.20)

jDk
nj = k(k � kCPn�1) (strong rot. symm.) (3.21)
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The calculation of circular permutations involves more advanced combinatorics and is outlined

in Appendix A. Comparing circular permutations to kn as a function of k analytically is di�cult

due to the complex nature of the circular permutation function. However, for small values of k,

these functions can be compared empirically. Figure 3.9 shows curves for both functions when an

n = 5 neighborhood size is assumed. By doing a simple regression, it is found that these functions

di�er by a factor of approximately four for a given value of k. This agrees with intuition since

a strongly symmetric transition rule is \rotated four times" for each transition rule in the non-

isotropic model. Also this implies that rule table sizes for an isotropic CA with strong rotational

symmetry will be approximately four times smaller than that of a non-isotropic CA:

j�jnon-iso ' 4 � j�jstrong (3.22)

Substituting Equation 3.22 into Equation 3.15, we can determine the relationship between these

two search space sizes as follows:

jDk
njnon-iso = k(j�jnon-iso)

' k4(j�jstrong)

' (jDk
njstrong)

4 (3.23)

Equation 3.23 shows that search spaces for CA models with strong rotational symmetry are roughly

four orders of magnitude smaller than comparable non-isotropic spaces.
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Figure 3.9: Number of permutations as a function of k for an n = 5 neighborhood.

As an example, the parity rule table in Table 2.1 (page 16) contains all 25 transition rules since

it assumes a non-isotropic space. If an isotropic space is assumed, each �nite state automaton in

each cell is strongly rotation symmetric. Since 2CP4 = 6, j�j = 12, as compared to 32 for the
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original table. The reduced rule table is shown in Table 3.2, where C�c(TRBL) is used to denote

the circular permutations of the four neighborhood positions.

C�c(TRBL) C0

00000 0

00001 1

00011 0

00101 0

00111 1

01111 0

C�c(TRBL) C0

10000 1

10001 0

10011 1

10101 1

10111 0

11111 1

Table 3.2: Reduced rule table for the parity function when assuming strong rotational

symmetry for each of the two cell states.

Table 3.3 shows computed values for jDk
nj for small numbers of states under di�erent symmetries.

For k=2, 4096 rule tables are possible with strong symmetry (the parity table above is one such

table). It can be seen that the rule table space is reduced many orders of magnitude when isotropic

spaces are used. However, for k > 2, jDk
nj values are nonetheless astronomically large. Values

for rule table sizes j�j are the exponent for the base k in this table. For k=5 it is seen that an

isotropic space can reduce rule table size by a factor of four (3125=825 ' 4) which was borne out

by Equation 3.23. This will later become an important factor from a computational perspective

when evolving such models using a genetic algorithm. Also note that �ve states are needed for

weak symmetry since one state is quiescent and four states comprise a single rotated component.

jDk

n
j

k Non-isotropic Strong Rot. Symm. Weak Rot. Symm. (c)

2 232 ' 1010 212 = 4096 { {

3 3243 ' 10116 372 ' 1034 { {

4 41024 ' 10617 4280 ' 10169 { {

5 53125 ' 102184 5825 ' 10577 5790 ' 10552 (1)

6 67776 ' 106051 62016 ' 101569 61968 ' 101531 (1)

7 716807 ' 1014203 74312 ' 103644 74249 ' 103591 (1)

8 832768 ' 1029592 88352 ' 107543 88272 ' 107470 (1)

9 959049 ' 1056347 914985 ' 1014299 914787 ' 1014110 (2)

Table 3.3: Values of search space sizes jDk
nj for various k-state, n=5 neighbor cellular

automata with di�erent symmetries.

3.3.3 EA Rule Tables and Search Spaces

In this section the rule table and search space sizes are calculated for the EA model. For purposes

of comparison, notation and symbols germane to CAs are used as appropriate. Analyses for both
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component sensitive input (CSI) and state sensitive input (SSI) EA models are given. For those

models, the notations j�j
CSI

and j�j
SSI

are used to distinguish the rule table sizes under the di�erent

input sensitivities. The same notation applies to search space sizes as well. As with CA models,

the set of all possible rule tables for a k-state, n-neighbor EA is denoted Dk
n. Since there are jAj

possible actions for each entry in a rule table, the number of possible rule tables under each input

sensitivity is

jDk
njCSI = jAjj�jCSI (3.24)

jDk
njSSI = jAjj�jSSI (3.25)

3.3.3.1 EA Rule Tables Under CSI

As de�ned in section 3.1, EA models have weak rotational symmetry. This condition does not

exclude having strongly rotation symmetric cell states in an EA model. Rather it means that at

least one weakly rotation symmetric cell state must be present. With k = ks + c� these conditions

imply that c > 0, ks > 0, and k � 1 + �, meaning that at least one component and one strongly

rotation symmetric cell state (empty/quiescent cell state) are required. Since the quiescent cell

state does not require any condition action rules, there are ks � 1 strongly rotation symmetric cell

states. Thus, the number of strongly rotation symmetric rules is

j�sjCSI = (ks � 1) � c+ksCPn�1 (3.26)

Under component sensitive input, the number of weakly rotation symmetric rules is the number of

components c times the number of possible neighborhood arrangements:

j�wjCSI = c(c+ ks)
n�1 (3.27)

The overall rule table size, j�j, is the number of condition-action rules in the rule table function.

Combining equations 3.26, 3.27, and j�j = j�sj+ j�wj,

j�j
CSI

= (ks � 1) � c+ksCPn�1 + c(c+ ks)
n�1 (3.28)

From 3.24, the search space size in the EA model under CSI is thus expressed

jDk
njCSI = jAj

(ks�1)� c+ksCPn�1+c(c+ks)
n�1

(3.29)

Is is clear from Equation 3.29, that search space sizes are very sensitive to the neighborhood size

n and number of components c. Table 3.4 lists rule space sizes for small values of c for various

2-D EA models having one strongly rotation symmetric state, � = 4, and using the von Neumann

neighborhood.

3.3.3.2 EA Rule Tables Under SSI

Using state-sensitive input, the derivation of the rule table size is similar to that of component

sensitive input. For SSI, the permutations for the neighborhood patterns are for k states as opposed

to c+ ks in CSI. Thus the c+ ks terms in equations 3.26 through 3.29 are replaced by k to give

j�sjSSI = (ks � 1) � kCPn�1 (3.30)

j�wjSSI = ckn�1 (3.31)

j�j
SSI

= (ks � 1) � kCPn�1 + ckn�1 (3.32)

jDk
njSSI = jAj(ks�1)� kCPn�1+ck

n�1

(3.33)
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c k jDk

n
j
CSI

1 5 jAj16

2 9 jAj162

3 13 jAj768

4 17 jAj2500

5 21 jAj6480

Table 3.4: Values of search space sizes jDk
njCSI for various k-state, n=5 neighbor e�ector

automata with ks = 1 and � = 4.

Equation 3.33 again shows the search space size to be very sensitive to neighborhood size n and

number of states k. Table 3.5 lists rule space sizes for small values of c for various 2-D EA models

having one strongly rotation symmetric state, � = 4, and using the von Neumann neighborhood.

c k jDk

n
j
SSI

1 5 jAj625

2 9 jAj13122

3 13 jAj85683

4 17 jAj334084

5 21 jAj972405

Table 3.5: Values of search space sizes jDk
njSSI for various k-state, n=5 neighbor e�ector

automata with ks = 1 and � = 4.

3.3.4 E�ect of Input Sensitivity on EA and CA Models

In this section a comparison is made of rule table and search space sizes under di�erent input

sensitivities in the EA and CA models. Using the expressions for rule table sizes under both CSI

and SSI, their magnitudes can be compared as follows. First assume there is only one strongly

rotation symmetric state so that ks = 1. This is a reasonable assumption since it is common for

weakly rotation symmetric models to have only one strongly symmetric state which represents the

empty/quiescent cell state. The ratio for the rule table sizes is

j�jSSI

j�jCSI
(3.34)

For cellular automata this ratio is

�c+1CPn�1 + c(�c + 1)n�1

c+1CPn�1 + c(c+ 1)n�1
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and for e�ector automata the ratio is

c(�c + 1)n�1

c(c + 1)n�1

Both of these ratios converge to the same constant as the number of components c is increased.

The circular permutation functions in the CA ratio are insigni�cant compared to the other terms

as c increases. Thus in the limit we have

lim
c!1

�c+1CPn�1 + c(�c+ 1)n�1

c+1CPn�1 + c(c + 1)n�1
= lim

c!1

c(�c + 1)n�1

c(c+ 1)n�1
= �n�1 (3.35)

Equation 3.35 states that as c increases, models (EA or CA) using component sensitive input have

rule tables that are approximately �n�1 smaller than models (EA or CA) using state sensitive input.

For a typical coordinate system with � = 4, and using the von Neumann and Moore neighborhoods,

it is seen that the j�j values will di�er by a factors of 256 and 65536, respectively, as the number

of components increases. This multiplicative increase translates into orders of magnitude increases

in search space sizes. From Equation 3.25 which expresses the EA rule table size:

jDk
njSSI = jAj(j�jSSI )

' jAj�
n�1(j�j

CSI
)

' (jDk
njCSI)

�n�1

(3.36)

From Equation 3.36 it can be seen that by using component sensitive input, the search space is

decreased approximately �n�1 orders of magnitude. As an example, the models used in this work

have � = 4 and n = 5, giving a di�erence of 256 orders of magnitude.

3.3.5 Summary of Rule Table Sizes

A summary of expressions for rule table sizes is shown in Table 3.6. An entry of \{" denotes \not

applicable". Figure 3.10 shows these functions graphically for small values of k, with Figure 3.11

showing the lower portions of the curves in detail. The curves for models using CSI have a sawtooth-

like appearance because � = 4: every fourth k the curve diminishes since four cell states are

converted into a single component. For example, at k = 12, ks = 3 and c = 2, but at the next

k (k = 13), ks = 1 and c = 3. It is clear from these curves that using component sensitive input

signi�cantly reduces the rule table sizes as compared to the other model parameters.

3.4 Growth of Self-Replicating Structures

In this section we analytically investigate the growth of self-replicating structures in 2-D, 5-neighbor

EA models. It appears reasonable to assume that a self-replicating structure could produce a

population of replicants that grow exponentially with time (for example, the population might

double in size every generation). However, as the following theorem indicates, this cannot occur.

A similar conclusion is reached in [Moore62] for speci�c 2-D cellular automata models.

Theorem 3.3 If a self-replicating seed structure S0 is capable of producing 
(t) replicants by time

t, then there exists a constant K > 0 such that 
(t) � Kt2.
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CA EA

State

Sensitive

Input

Non-isotropic kn {

Strong Rot. Symm. k � kCPn�1 {

Weak Rot. Symm. ks � kCPn�1 (ks � 1) � kCPn�1

+ ckn�1 + ckn�1

Component

Sensitive

Input

Non-isotropic { {

Strong Rot. Symm. { {

Weak Rot. Symm. ks � c+ksCPn�1 (ks � 1) � c+ksCPn�1

+ c(c+ ks)
n�1 + c(c+ ks)

n�1

Table 3.6: Summary of rule table sizes j�j for n-neighbor CA and EA models under dif-

ferent rotational symmetries. \{" denotes \not applicable".

Proof: Let the smallest rectangle enclosing S0 be of dimensions l � w. Then at each time t, the

largest number of non-empty cells in the con�guration Ct is given by

j supCtjmax = lw + 2lt+ 2wt+ 2(t2 � t)

Dividing by the size of each replicant, the number of replicants at time t is at most

lw + 2lt+ 2wt+ 2(t2 � t)

lw

which is O(t2). Therefore 
(t) is bounded by Kt2. �

The limit on the population size results from the �nite \velocity" in which automata may

propagate into the empty region of space: using the von Neumann neighborhood, EA automata

may move one cell at each time step. This restriction has been called analogous to the physical

limitation imposed by the speed of light.
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Chapter 4

Designing GAs for Automatic Discovery of

Self-Replicating Structures

Over the decades since von Neumann �rst demonstrated that structures in cellular automata can

self-replicate [von Neumann66], a substantial body of theoretical and modeling studies have led to

progressively simpler and smaller models [Codd68, Langton84, Reggia93]. However, all such past

models have been manually designed, a process that is very di�cult and time-consuming, and is

prone to subjective biases of the implementor. With ever smaller hand-designed self-replicating

structures being reported, and ever increasing computational resources available, the hypothe-

sis that it would be possible to generate self-replicating structures automatically appeared to be

testable. Since this problem had never been attempted, it was of great interest to show that the

automatic discovery of self-replicating structures was even possible.

As noted in Section 2.3.3 of Chapter 2, relatively few studies have reported using genetic

algorithms to automatically produce rule tables for cellular space automata models. However, un-

til [Lohn95] there were no reports of using GAs to produce cellular space automata models for

self-replicating structures, and self-replicating structures were the very subject cellular automata

were �rst invented to study. Such research was most likely not undertaken for at least two reasons.

Firstly, the computational load can become enormous. As shown in Chapter 3, the rule tables for

modest CA systems can quickly grow extremely large (e.g., 25,000 for a k=10 states strongly rota-

tion symmetric CA), and manipulating numerous such large \chromosomes" in a GA can quickly

exhaust the memory capacity and processing capabilities on many computer systems. Secondly,

and most importantly, identi�cation of e�ective �tness functions is a di�cult task. Apparently

obvious �tness functions such as those that count the number of replicants are useless early on as

there will typically be none. In general, assigning small values of �tness to behaviors that do not

resemble self-replication yet have potential to evolve into such a process is a very di�cult problem.

The solution to this problem is one of the key contributions of this chapter.

The novel �tness functions reported in this chapter are general in three senses: they may be

applied to a large number of 2-D cellular space automata models, any size and shape seed structure

containing unique components may be used, and they may be used in conjunction with a variety of

search techniques. Evidence of this generality is presented in Chapter 5 where the �tness functions

are used in both CA and EA models, and under four search techniques. In addition, the �tness

functions do not impose undue biases towards any particular process of self-replication. That is, in

their de�nitions, the �tness functions do not assign credit based on aspects such as: the contents

of speci�c cell locations at speci�c instants, whether/how the structure should translate or rotate
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itself over time, the quantity/timing of replicant production, or the extent to which con�gurations

match a prede�ned con�guration.

Since the primary search technique for the rule discovery system here is the genetic algorithm,

areas speci�cally concerning the use of the GA are also presented. This includes the choice of genetic

operators, associated parameters, penalty functions, and multiobjective optimization issues.

4.1 Models Used in Experiments

Like CA models, the range of potential EA models is vast. For the purpose of studying self-

replicating structures, a small set of speci�c EA models are adapted from the general EA model

described in Chapter 3. In selecting these models, several criteria were of great importance:

� For comparison purposes, fundamental model parameters should be kept the same as or

closely parallel to previous work in hand-designed, self-replicating structures. For example,

parameters such as the dimensionality of the cellular space, neighborhood size and shape, and

the number of coordinate system rotations were kept the same as in several previous studies

(for example [Reggia93]).

� The set of actions A should include the fundamental operations observed in previous models of

self-replicating structures. An exception to this is the omission of the BECOME action. Because

the BECOME action changes an automaton's component type, and thus the manner in which it

behaves, it compromises the physical relevance of the automata. An analogy using biological

cells is �tting. An amoeba cell may be capable of movement, but is not capable of becoming

a blue-green algae cell.

� Seed structures should be similar in size to those of the smallest known self-replicating struc-

tures.

� The model should allow computational feasibility when used in conjunction with a genetic

algorithm.

The EA model used in the experiments reported in this thesis is as follows. A 2-D cellular

space is chosen since it has been used almost exclusively to study self-replicating structures1. The

neighborhood template is the von Neumann neighborhood which consists of �ve neighbors including

the center cell. All automata are weakly rotation-symmetric so that each distinguishes the relative

locations of its four neighboring cells as top, right, bottom, and left. Each automaton is represented

by a symbol in fA; B; C; Dg indicating its component type. The set of actions used are described in

Table 4.1.

Automata may move (both translation and rotation are included in the same action for conve-

nience), divide into two copies (again movement is included for convenience), self-destruct, or

remain inactive. Note that the DV-ROT action directly enables replication at the level of individual

automata, not the self-replication of multi-automata (aggregate) structures. Although the divide

action may appear to be \too powerful" (in the sense of making self-replication less di�cult), we

note that all previous self-replicating structures use a similar mechanism in their self-replication

1See Table 2.2 on page 24 for a summary of previous research.

51



Action Description

MV-ROT <dir> <rot> move one cell in the speci�ed direction and ro-

tate the speci�ed number of degrees

DV-ROT <dir> <rot> <dir> <rot> divide into two daughter automata according

to the speci�ed directions and rotations

DESTR cease to exist

NULL no action

Table 4.1: Set of actions A used in the EA model.

processes. For example, it is a simple matter to program a CA to have two quiescent cells become

the same state of a shared neighboring cell. Again, the di�culty lies in achieving the self-replication

of an entire structure. With �=4, values for the direction parameter (shown as <dir>) are either

top, right, bottom, or left, and the rotation parameter (shown as <rot>) can be either 0, 90, -90,

or 180 degrees. The key EA model parameters chosen are summarized in Figure 4.1.

4.2 Rule Discovery

The problem to be solved in this chapter is that of automatically �nding rule tables that yield

self-replicating structures in cellular space automata models. Problems of this kind are called rule

discovery problems since the goal is to search a large search space composed of sets of simple rules

and discover rules that have high performance. The rule discovery technique used here is the genetic

algorithm. The application of GAs to rule discovery problems is most well-known in the study of

classi�er systems[Holland80, Booker90], which are massively parallel, rule-based machine learning

systems that learn rules through the use of credit-assignment and rule discovery.

An overview of the speci�c rule discovery system used is illustrated in Figure 4.2. The main

component of the system is the technique called the rule discovery process. Techniques other than

the GA may be used instead, and these are discussed in Chapter 5. Inputs to the rule discovery

process are as follows. The description of the cellular space model may be either the EA or CA

models2. This description informs the rule discovery process of the relevant de�nitions concerning

the cellular space model being investigated, including: the manner in which rules are processed,

the type of space de�ned in the particular model, and how the space iterates over time. The

evaluation criteria specify the manner in which discovered rule tables are judged. In the context

of the genetic algorithm, these criteria are called �tness functions. This is the most di�cult part

of the system to design since it is not obvious how to apportion �tness to encourage and sustain

self-replicating behaviors. This subject is described later in this chapter and is a key innovation

of this thesis. The initial conditions specify the con�guration of cells at t = 0 (the seed structure

S0), and parameters associated with the rule discovery process. In the case of a GA as the rule

discovery process, such parameters would include mutations and crossover rates, population size,

the number of generations, and convergence criteria. Also shown in Figure 4.2 (lower right) is

2Other cellular space models may be used, such as stochastic automata, however they are beyond the scope of

this work.
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Parameter Value(s)

N 2 dimensional space

� 4 coordinate system rotations (90�)

n 5 cell von Neumann neighborhood

A fMV/ROT(d; r); DV/ROT(d1; r1; d2; r2); DESTR; NULLg

ks 1 strongly rotation symmetric cell state (quiescent)

(a)

Parameter Sets

Set 1 Set 2 Set 3

S0 v̂1 v̂2
v̂1 v̂2

v̂3

v̂1 v̂2 v̂3

v̂4

c 2 3 4

k 5 13 17

kw 4 12 16

V̂ fv̂1; v̂2g fv̂1; v̂2; v̂3g fv̂1; v̂2; v̂3; v̂4g

(b)

Figure 4.1: CA and EA model parameters used in the genetic algorithm: (a) parameter

values used for every GA; (b) sets of parameters for varying seed structures.

the �nal step in the rule discovery system. Because the rule discovery processes examined here

do not guarantee �nding a rule table that promotes self-replicating behavior, the discovered rule

table requires simulation and subsequent analysis to determine if the structure self-replicates. The

criteria for such determination is described next, where a de�nition of a self-replicating structure

is presented.

4.3 Self-replicating Structures

A structure S and a metamorphosing structure ~S were formally de�ned in Section 3.1.2. Brie
y,

a structure is a set of contiguous non-empty (non-quiescent) cell states, and a metamorphosing

structure is a set of cell states that forms a structure at time t, changes shape from t+1 through

t0, and is identi�able as the original structure at t0+1. A self-replicating structure Sr builds upon

those de�nitions, and understanding the de�nition of a self-replicating structure is a prerequisite

to understanding the �tness functions presented in subsequent sections.

In de�ning a self-replicating structure the notion of separation between structures needs to be
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Description of Cellular
Space Model

(CA, EA)

Rule Discovery Process
(GA or other technique)

Evaluation Criteria
(fitness functions)

Initial Conditions
(seed structure,

parameters)

rule
table

produces

rule
table

space
iterates

over time

simulate

Examine Results

Figure 4.2: Overview of the rule discovery system showing the major components, pro-

duction of a discovered rule table, and the manner in which the discovered

set of rules is analyzed.

made precise. The three degrees of separation among two structures (or in general, con�gurations),

are noted. Recall that the set of all non-empty cells in a con�guration C is the support function,

supC. Two con�gurations C and C 0 are distinct3 if

supC 6= supC 0 (4.1)

C and C 0 are disjoint (Equation 3.6 repeated for convenience) if

supC \ supC 0 = ; (4.2)

The third and strongest form of separation is called isolation. Recall Equation 3.11 which de�nes

the neighborhood function of a cell � as g(�). Let the neighborhood function of a con�guration

C be de�ned as the set of all cells that are in the neighborhood of C's non-quiescent cells. This

function is denoted G(C) and is expressed as

G(C) =
[

�2supC

g(�) (4.3)

3Term used in [Moore62, pg. 22]
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A con�guration C is isolated from con�guration C 0, denoted C a` C 0, if the set of cells common to

both con�guration's neighborhoods is not in supC. This is expressed as

supC \ (G(C) \G(C 0)) = ; (4.4)

Figure 4.3 illustrates with an example the di�erences between the degrees of separation among

con�gurations.

X Y

Z

X X Y

Z

X

Distinct

Distinct, Disjoint

Distinct, Disjoint, Isolated

X Y

Z

X X Y

Z

X

X Y

Z

X Y

Z

X

Figure 4.3: Illustration of the terms distinct, disjoint, and isolated with respect to two ex-

ample 4-component structures. The von Neumann neighborhood is assumed.

De�nition 4.1 A con�guration Sr is a self-replicating structure if all the following criteria are

met.

1. Sr is a structure (De�nition 3.2), and is comprised of more than one non-quiescent cell:

jSrj > 1 (4.5)

2. Sr becomes a metamorphosing structure ~Sr (De�nition 3.3) during its self-replication process.

3. Copies, possibly translated and/or rotated, of Sr, called replicants, are created in neighbor-

adjacent cells by the metamorphosing structure ~Sr. Such replicants are denoted Sri with i

representing the ith generation o�spring (i = 1; 2; : : : ).

4. There exists a time t such that Sr can produce i replicants, for any positive integer i, for

in�nite cellular spaces (Moore's criteria [Moore62, pg. 22]).

5. If the self-replication process begins at time t, there exists a time t+�t (for �nite �t) with

�t > 1 (4.6)
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such that replicant Sr1 becomes isolated from the parent structure:

Sr a` Sr1 (4.7)

The above de�nition, taken as a whole, is more precise than previously reported de�nitions in

which construction universality was not required4. This is de�nition used for the self-replicating

structures presented in this thesis, and we note here its bene�ts. Firstly, it encompasses the

more recently reported models of self-replication (those starting with [Langton84]). Secondly, it

precludes many trivial self-replication processes, discussed in more detail below. And lastly, it

precludes \artifact" replicants { structures that form the appropriate size and shape, for example,

from a supply of unused components without being directed to do so. Such \artifact" replicants

are constructed in a random fashion, and are more likely to appear as the seed size (number of

components in the seed) becomes smaller.

An important issue that arises from any de�nition of a self-replicating structure concerns trivial

self-replicating structures. Such structures are seen as not requiring a stored instruction sequence

that is interpreted during the replication process. For example, a 1-D, 3-neighbor CA can easily

be made to give the behaviors shown in Figure 4.4. In both examples shown, the seed struc-

tures are shown at t=0 and at t=3 replicants can be seen isolated. Note that in the de�nition of

self-replicating structure Figure 4.4(a) would not be included because of the requirement that the

structure size be greater than one (jSj > 1). Also the de�nition above states that self-replication

processes must have a duration of at least one time step as speci�ed in Equation 4.6. This pre-

cludes many structures having a trivial self-replication process. While Figure 4.4(b) does meet this

requirement, it is considered trivial because all of its components simultaneously split at t=1.
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Figure 4.4: Examples of trivial self-replicating structures in a 1-D, 3-neighbor cellular

space model. Seed structures are seen at t=0, and with three more time

steps shown. (a) 2-state, 1-component structure; (b) 3-state, 3-component

structure.

A precise de�nition of a trivial self-replication structure has not appeared in the literature, al-

though it has been mentioned numerous times [Moore62, von Neumann66, Thatcher70, Langton84].

The distinction adopted here is from [Langton84, pg. 137, original emphasis]:

It seems clear that we should take the \self" of \self-reproduction" seriously, and require

that the construction of the copy be actively directed by the con�guration itself. That

4The requirement of construction universality was used in earlier models of self-replicating systems in order to

avoid trivial self-replicators. However, such a requirement has been abandoned over the last decade or so (including

the present work) mainly because biological self-replicating systems do not have such a requirement.
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is, responsibility for the production of the o�spring should reside primarily within the

sequences of actions undertaken by the parent structure. Note that we want to require

that responsibility reside primarily with the parent structure itself, but not totally. This

means that the structure may take advantage of certain properties of the transition

function... ...but not to the extent that the structure is merely passively copied by

mechanisms built into the transition function.

...the con�guration must treat its stored information in two di�erent manners... in-

terpreted, as instructions to be executed (translation), and uninterpreted as data to be

copied (transcription).

Thus, we distinguish between trivial and non-trivial self-replication by insisting that the struc-

ture actively directs the construction of o�spring, as opposed to trivial cases where all component

automata simultaneously split to form two copies.

With De�nition 4.1, the goal of the genetic algorithm, or, more generally, any rule discovery

process, can be stated as follows. Given an initial seed structure S0 such that C0 = S0, �nd the

rule table function �

Ct = �(Ct�1) (t > 0) (4.8)

which generates the sequence of con�gurations

C = fC1; C2; : : : g (4.9)

such that S0 satis�es the requirements of a self-replicating structure as speci�ed in De�nition 4.1

during the propagation C.

4.4 The Choice of Genetic Algorithms

Before describing the genetic algorithm as it is used in this thesis, the motivations for choosing the

genetic algorithms as the rule discovery technique are as follows. As described in Chapter 3, the

size of the search spaces for both EA and CA cellular space models can be incredibly large. GAs

are a well-known strategy for searching such extremely large search spaces quickly [Mitchell96]. In

addition to its size, the search space landscape is not well understood. Except for reports examining

small (k=2) cellular space models [Wolfram94], apparently no studies have been reported which

attempt to understand the larger search spaces (k > 2). Such search spaces are very unlikely to be

smooth and unimodal, which would suggest gradient-ascent algorithms such as steepest-ascent hill

climbing.

In this work, the goal of automatically �nding self-replicating structures is not directly concerned

with �nding the optimal self-replicating structure, the de�nition of which would subjective. Rather,

�nding a diverse set of such structures is of greater importance and more interesting. Thus �nding

su�ciently good solutions instead of the global optimum is required. GAs are well-suited to such

goals.

Experimental results from other search techniques are presented in Chapter 5 for purposes

of comparison to the GA. The techniques used are multiple restart stochastic hillclimbing and

population-based incremental learning. The results show that these techniques were not as e�ective

as the genetic algorithm for the problem examined. In most cases the other search techniques failed

to discover any self-replicating structures.
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4.5 Genetic Algorithm Design

The theory of genetic algorithms was brie
y reviewed in Section 2.3 (page 24). In this section the

genetic algorithms employed in this thesis are described, with special emphasis on the derivation

of the �tness functions used. Two genetic algorithms were designed in the course of this research.

The primary GA was used to discover many self-replicating structures, and is the main focus of this

section. An auxiliary GA, called a meta-level GA [Grefenstette86], was used to optimize certain

parameters for the primary GA. This use of a second GA for multiobjective optimization is discussed

in Section 4.7. Both genetic algorithms are variants of the traditional genetic algorithm [Davis91].

Accepted notation found in the genetic algorithm literature is used when appropriate. However, to

avoid clashes with the notation used for cellular space models presented in Chapter 3, some GA

symbols were modi�ed slightly. The notation is shown in Table 4.2.

Symbol Meaning

g generation number

P population: set of chromosomes

a population member: a chromosome

aig ith population member of generation g

na population size: number of chromosomes

Table 4.2: Notation used for genetic algorithms.

An overview of the primary genetic algorithm as it is used in this thesis is depicted in Figure 4.5.

Each area of the GA is discussed in detail in the sections below. Here some general remarks about

the GA are made. The GA begins by assembling a population of randomly initialized rule tables,

also called chromosomes in this context, which are on the order of 1000 elements long for the

models studied. The GA then proceeds to iterate in a loop until a speci�c convergence criterion

is satis�ed. In Figure 4.5 the two overall phases of processing are seen: an evaluation of the

population, and creation of a new population. Evaluating the population of chromosomes is the

most time consuming operation since 100 simulations are executed and complex �tness calculations

are made for each simulation. The creation of a new population of chromosomes is where genetic

operators are applied with the intention of creating a new set of chromosomes with higher �tness

values.
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Linear Normalization of Fitnesses
Roulette Wheel Sampling
Generational Replacement with Elitism

Repeated Single-point Crossover
within Gene Segments
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Crossover
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Point mutation of actions/states

Evaluate Population

Run 100 Simulations
Compute Fitnesses, F1, F2, . . . , F100
Extract Statistics
Determine Best-of-Generation F*

Convergence Criteria Satisfied

Population of Randomized
Rule Tables

1 2 100

yes
no

Exit with
Best Rule

Table

Figure 4.5: Overview of primary genetic algorithm as used in this thesis.
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4.5.1 Encodings

As discussed in Section 2.3, an arti�cial chromosome refers to a candidate solution for a given

problem. In genetic algorithms, chromosomes are often encoded as binary strings, although other

encodings, such as real-valued and tree encoding schemes are possible [Mitchell96]. The following

discussion concerns the choice of encoding system for rule tables, and the speci�c encodings for

rule tables used in this thesis. However, it is noted here that a binary encoding was chosen for use

in an auxiliary genetic algorithm to be discussed in Section 4.7.

In addition to the encoding schemes mentioned above, another choice for representing candidate

solutions to the GA is to use the natural encoding of the problem at hand. This approach is stated

as part of the \principle of minimal alphabets" [Goldberg89, pg. 80]. The natural encoding for

chromosomes in cellular space automata models is the rule table itself. This is the encoding strategy

approach taken for the genetic algorithm described in this thesis. In [Davis91] it is argued that

using the natural encoding of a problem confers two advantages over arti�cial encodings. Firstly,

it allows the researcher to work with the GA in a more natural way given that he or she is already

familiar with candidate solutions to the problem. Secondly, a natural encoding guarantees that

domain expertise embodied in the encoding will be preserved.

Two additional motivating factors for using the natural encoding of a problem are as follows.

In transforming the problem into an arti�cial encoding, a second step of decoding it back to the

original form is required. This process incurs overhead to the GA, and given that the cellular

space models are quite large and require large amounts of memory and CPU time, saving this

encode/decode overhead reduces the computational load. A second factor concerns the fact that

other encodings can be unwieldy for the large chromosomes required for representing rule tables.

As mentioned, the chromosomes in the GA are comprised of rule tables. As an example, the

representation chosen to encode CA and EA rule tables for two and three component systems is

depicted in Figure 4.6. In both example chromosomes, the rule tables are shown indexed implicitly

by the neighborhood pattern CTRBL (center, top, right, bottom, left). From the derived equations

in Chapter 3, the size of these chromosomes are computed as 838 (CA) and 768 (EA). As shown

in Figure 4.6, rules for each component are grouped together within the chromosome. Note that

because of rotational symmetry some groups will be larger than others. In GA terminology, such

blocks of related adjacent elements in the chromosome are called genes. Grouping rules together as

genes allows the GA to optimize rules for individual components separately. This can be thought

of as programming A type \machines" separately from B type, etc. This grouping presumably aids

in GA performance in light of the building block hypothesis of GA theory (reviewed in section 2.3).

Partitioning the chromosome into such genes also allows for 
exibility in applying the crossover

operator (discussed in section 4.5.3).

The size of the chromosomes corresponds to j�j, the rule table size as de�ned in Chapter 3. This

implies that the complete rule table is used as the chromosome, which is important for two reasons.

Firstly, for larger models (k > 5) it is likely that during a �tness evaluation, some rules may never

be activated. That being the case, because all possible are represented in the chromosome, the GA

still manipulates these inactive rules. This is analogous to the introns (\junk DNA") in biological

chromosomes. Note however, that due to the genetic operators in the GA, rules that are inactive in

one generation, may be recombined and/or mutated and become active in the next. Thus segments

of inactive loci on the chromosome may still contain valuable genetic information. Secondly, having

the complete rule table in the chromosome implies that rules that are active (executed by the
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Figure 4.6: Examples of chromosome representation in the GA. Shown are weakly rota-

tion symmetric models comprised of three components: (a) cellular automata;

(b) e�ector automata.

automata) but do not change the automaton's state are manipulated as genetic material by the

GA and are relevant to the model's behavior. An example of such rules is XXYZX! X, which shows

the cell state X remaining as X for the next time step.

The ordering of rules within the chromosome plays an important role regarding the performance

of the GA. Many rules in the rule table will need to be coadapted. However, if these rules were

close to each other in the rule table, the probability of those rules being disrupted by crossover

is reduced, and thus by the building block hypothesis, the GA would perform better. In GA

terminology having such chromosome loci being near each other is called linkage. In the encoding

method described above, the rules are ordered lexicographically within each state/component-type

segment of the chromosome. Thus the ordering within in each segment is of an arbitrary nature.

Based on the linkage argument above, this arbitrary ordering probably impedes the GA from

�nding better solutions more quickly. However if one knew how to properly order the rules within

the chromosome a priori, much of the problem is solved. This is a famous paradox encountered

by GA researchers and practitioners. The ordering of rules within the rule tables tries to limit the

arbitrariness by grouping rules for each component/state together. However within each of these

groups, it would be di�cult to choose in advance speci�c orderings.

In addition to including the rule table in the chromosome, one might also include the initial

con�guration of the cellular space, known as the seed structure. In this manner the chromosome

encodes all of the initial conditions for a simulation. Such an encoding was used in preliminary GA

experiments. However, because encoding the rule table alone produced positive results using less

computational resources, this encoding scheme was not investigated further.

4.5.2 Selection

Selection is the process of choosing individuals (chromosomes) from a population so that they may

mate and produce \o�spring" for the next generation. Numerous arti�cial selection methods for use
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with GAs have been reported in the literature [Goldberg89, pg. 121]. Selection of chromosomes to

mate is based on the �tness of the chromosomes, and the goal is to give more reproductive chances,

overall, to �tter chromosomes so that their o�spring will in turn garner even higher �tness. If

too many higher-performing chromosomes are selected, the GA may converge prematurely with

a suboptimal group of high-performing chromosomes dominating the population. Conversely, if

not enough high-performing chromosomes are chosen, the evolution will proceed slowly. There is

no single selection technique that stands out as always being the best. For the GA experiments

reported here, the selection technique involves three methods described below: linear normalization

of �tnesses, roulette wheel selection, and elitism.

Linear Normalization of Fitnesses

After a population has been evaluated and the �tnesses for each of the chromosomes is known,

the �rst step in selecting parents to mate is to apply linear normalization of the �tnesses. Linear

normalization, a variant of rank selection, involves ordering the chromosomes linearly based on their

�tness scores. For example, �ve chromosomes could have their �tnesses normalized and ordered as

30, 25, 20, 15, 10, with 30 representing the highest-performing chromosome. The distance between

�tnesses (�ve in this example), is called the decrement and can be chosen as desired. A decrement

value of 1 was chosen, and using a population size of 100 chromosomes, the normalized �tnesses

are thus ordered 100; 99; : : : ; 1. An ordering using a decrement value of 1 is a ranking method with

a rank of 1 denoting the least �t chromosome.

Roulette Wheel Sampling

After the linear normalization of �tnesses, stochastic sampling of the ordered chromosomes is

used to randomly select parents, with each parent's chance of being selected directly proportional

to its �tness. This technique is referred to as roulette wheel sampling since it may be thought of as

allocating sectors of a circular roulette wheel with each sector sized according to a chromosome's

�tness. Using linear normalization of �tnesses as described above, the probability of selecting

chromosome ai from a population of nc chromosomes is given by

prob(selecting ai) =
i

ncX
j=1

j

(4.10)

The population size nc used in the GA experiments herein was 100. For illustration purposes,

Figure 4.7 shows how the sampling probabilities breakdown for a population size of nc = 5. In this

case, the value of the denominator in Equation 4.10 is 15. Thus the chromosome ranked highest in

�tness (number 5), will be selected to mate 5
15 or 33.3% of the time.

Elitism

The number of times roulette wheel sampling is performed in each generation depends on

the generational replacement policy used. Given a population at generation g, Pg, the question

becomes, how many new chromosomes will be created for the next population Pg+1, and how many

existing chromosomes will simply be copied over. The fraction of new chromosomes placed into

Pg+1 is called the generation gap [Goldberg89, pg. 111]. For the GAs in this thesis, a generation

gap of 98% was used.
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Figure 4.7: Illustration of roulette wheel sampling with �ve chromosomes. \chr i" denotes

chromosomes and percentages shown correspond to the probability of being

selected.

Elitism [De Jong75, pg. 102] is a technique in which the GA is forced to retain a speci�c number

of best individuals at each generation. The method of elitism as it is used here is as follows. Let

a�g and a��g be the individuals with the highest and second-highest performance, respectively, from

population Pg at generation g. Population Pg+1 is constructed as usual, with the exception that the

�rst two members of Pg+1 are copies of a
�
g and a��g . Thus it is seen that these two elite individuals

may propagate from generation to generation. Through experimentation, selection using elitism

was found to outperform the same selection technique without elitism.

4.5.3 Crossover and Mutation Operators

This section describes how the genetic operators of crossover and mutation were adapted in the

GA. A discussion of these operators can be found in Section 2.3. Many variations of crossover are

possible. Performing single-point crossover on bit-string encodings is a relatively straightforward

procedure (see Figure 2.12), however when applied to rule tables, some aspects of this technique

were modi�ed.

As previously discussed, the chromosomes are rule tables. Example rule tables for both CA and

EA models are shown in Figure 4.6. In bit-string chromosomes, the lowest level genetic information

is the bit, and crossover points are chosen between adjacent bits. For rule tables, crossover points

are chosen at the boundary points between rules. The type of crossover used here is a version

of multi-point crossover whereby single-point crossover is applied within gene segments, as shown

in Figure 4.8. As mentioned earlier, genes correspond to segments of the rule table that contain

rules for a single state (in the CA model) or component (in the EA model). These segments are

labelled and marked by a heavy line in the diagram. A crossover point is randomly selected within

each gene segment, and single-point crossover occurs. The diagram shows an EA model where each

component has only �ve rules (an EA model with so few rules is unrealistic, but this is shown only

to illustrate the crossover technique clearly). Two children chromosomes are shown with the results

of the per-gene segment crossover.
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Figure 4.8: Illustration of crossover using EA rule tables. Parent chromosomes p1 and

p2 are recombined to form o�spring c1 and c2 by segmenting the rule tables

into c partitions (genes) according to component type, and crossing over rules

within each partition (as in Figure 2.12(a)), with each crossover point chosen

at random.

This approach was taken for the following reason. Since we are mainly concerned with weakly

rotation symmetric cellular space models (i.e., models having components), each gene segment of

the rule table speci�es the behavior of a speci�c automaton. Performing crossover within each

segment allows the GA a more detailed granularity in optimizing the behavior of each automaton

individually. Thus at a low level, the GA evolves each component type (\species") separately.

At a higher level, because the �tness functions are rewarding cooperation among components,

component types are evolved together in a coadapted manner. Indeed, empirical results comparing

this crossover technique to that of single-point crossover (across the entire rule table) showed higher

performance for the multiple application of crossovers.

Crossover is only applied to a fraction of the population of chromosomes. This fraction is

determined by the crossover probability pc, a parameter of the GA. After each set of two parent

chromosomes are chosen, a biased decision is made whether to perform crossover or copy the parents

directly into the next generation. If it is decided to perform crossover, then each gene segment of

the chromosome is crossed-over in the manner described above.

After selection and crossover have produced two children chromosomes, each is subject to the

mutation genetic operator. As with crossover, mutation is applied in only a fraction of rules in the

rule table, based on the mutation probability parameter pm. Mutation works in a similar manner

for both CA and EA chromosomes. For a CA rule table, when a rule is selected for mutation, it is

64



replaced by randomly choosing one state from the k states speci�ed in the model. Similarly, for an

EA rule table, a randomly selected action from the set of actions A is chosen to replace the original

rule. An example of this is shown in Figure 4.9.

child mutated
child

MV-ROT DESTR

Figure 4.9: Example of an EA rule undergoing mutation. A movement/rotation rule is

mutated into a destruct rule.

4.5.4 Fitness Functions

The purpose of a GA �tness function is to assign a measure of performance to each chromosome

in the population, depending on how well each chromosome (rule table) encodes rules that result

in an initially-speci�ed structure exhibiting self-replicating behavior. Designing a �tness function

to evaluate self-replication is di�cult because self-replication is a dynamic and complex process.

Naive measurement of the number of replicants is not useful early on as none of the initial ran-

dom chromosomes produce replicants. This has been borne out in extensive testing of randomly

initialized chromosomes, and agrees with intuition, given the immense search space sizes discussed

in Chapter 3. Further, comparing an evolving structure to a prede�ned template of seed structure

copies by way of pattern matches fails to give partial credit during the replication cycle itself, when

the structure has changed shape as it directs its self-replication. Having a prede�ned template also

imposes a strong bias on the self-replication process, which is undesirable since it severely limits

the types of self-replicating behaviors that could possibly emerge.

Another di�culty is that, since the length of the desired self-replication cycle is unknown, using

data from a single time-step would require knowing a priori which con�guration replicants appeared

in and assumes that replicants appear all at once rather than at di�erent time-steps. Clearly, data

from multiple time-steps are needed so as to identify replicants as they are produced. This leads to

this problem of deciding which con�guration to start with, and how many subsequent con�gurations

to examine for self-replicating behavior.

Since the GA begins with a population of randomized rule tables (Figure 4.5), it is extremely

unlikely that such rule tables will lead to self-replicating behavior. If the �tness functions of the

GA assign positive �tness values only to rule tables that lead to self-replicating behavior, then all

rule tables will have �tnesses of zero, and the GA will not be able to apply its genetic operators

e�ectively. In such cases the GA degenerates into an ine�cient random search process. Assigning

small values of �tness to behaviors that do not resemble self-replication yet have potential to evolve

into such a process is needed to allow the GA to search e�ectively. It is noted here that no other

research to date5 has reported techniques that attempt to cope with this problem.

5With the exception of [Lohn95] where preliminary advances are reported.

65



The issues raised above can be summarized as two questions: which simulation con�gurations

should be used and what criteria should be applied for an e�ective evaluation of self-replicating

processes. The following sections present novel solutions to these questions. The �tness functions

derived are general in three senses. Firstly, they may be applied to a large number of 2-D cellular

space automata models (both EA and CA models of varying sizes). Secondly, any size and shape

seed structure containing unique components may be used. Thirdly, the �tness functions are not

speci�c to GAs, and may be used in conjunction with a variety of search techniques. Evidence of

these points is presented in Chapter 5 where the �tness functions are used in both CA and EA

models, with varying seed structures, and under di�erent search techniques. In addition, the �tness

functions do not impose a strong bias toward any particular process of self-replication. That is,

in their de�nitions, the �tness functions do not assign �tness based aspects such as: the contents

of speci�c cell locations at speci�c instants, whether/how the structure should translate or rotate

itself over time, the quantity/timing of replicant production, or to what extent do con�gurations

match a prede�ned con�guration.

4.5.4.1 Evaluations

Prerequisite to understanding how the �tness functions are derived is to recognize the manner in

which they are used. As mentioned previously, �tness functions associate �tness values to each

rule table (chromosome) in the population of a GA. This section discusses how each rule table is

evaluated, and the reasoning behind how the evaluations were set up. Speci�cally, details concerning

initial conditions and progress of the simulation are presented. Figure 4.10 depicts the evaluation

phase starting with the selection of one rule table from the population at generation g.

The evaluation of each chromosome requires that a complete EA (or CA) simulation be executed

(Figure 4.10, middle). As in other dynamical systems, initial conditions play a critical role in

determining the cellular space's behavior. The initial conditions for each evaluation are comprised

of a rule table, �, and seed structure S0. While it is possible to have the GA evolve both � and S0
simultaneously, the results of preliminary experiments in this direction were disappointing. Thus,

the decision was made to keep S0 �xed { every evaluation that a single GA performs uses the

same S0. The seed structures were comprised of the two, three, and four unique components as

shown in Figure 4.11. The choice to use small structures was based on research showing that self-

replicating structures as small as �ve and six components existed [Reggia93]. When using small

seed structures such as these, the nature of the self-replication process concerns the self-in
uencing

forces/behavior that di�erent interacting components have on each other. For example, because

individual components generally move at each time step, their inputs (the automata located in

neighboring cells) change regularly. With each new set of inputs, the component can execute a new

rule. Thus when a seed structure moves or rotates as a whole, components of the seed structure

can in
uence other components, creating a self-in
uencing, self-directing process. The analogy of

epistatic interactions in biological genes is appropriate here: like genes at di�erent locations on the

chromosome which can suppress the expression of other genes, the components of a self-replicating

structure can a�ect the behavior of other components in the same structure. As in previously

reported unsheathed self-replicating structures, the components are thought of in two ways: as the

instruction sequence, and as the machinery to read the instructions.
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Figure 4.10: Evaluation phase of genetic algorithm.

Con�gurations Used in Fitness Functions

As seen in the block labelled \Run Simulation" in Figure 4.10, the set of con�gurations to be used

by the �tness functions is shown as C1; C2; : : : ; C15. The choice of which con�gurations to use in

the evaluation of a self-replication process is an important design parameter and is discussed now.

Letting t0 and �t denote the �rst time-step and the duration of time which will be examined

for �tness calculations, respectively, the tradeo�s can be stated as follows. If �t is too small,

this may not give enough time for a self-replicating process to emerge. If �t is too large, two

undesirable situations will arise. First, the e�ciency of the GA will go down since the GA will

be spending more time examining behaviors that, in general, do not exhibit self-replication. As

seen earlier in Figure 4.5 on page 59, the simulations are inside two loops of the GA: one for each

population member, and one for each generation. The product of these two numbers is on the

order of 200,000 for our experiments. Thus the expression 200; 000�t represents the total number
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Figure 4.11: Seed structures: (a) 2-component; (b) 3-component; (c) 4-component.

of simulation time-steps executed during the GA. Later, in Chapter 5, it will be seen that 100 GAs

are required for statistical sampling purposes. Therefore each increment to �t adds 20,000,000

more time-steps to the overall GA, which becomes a signi�cant computational burden. Second,

as �t increases, the likelihood of spurious seed structure copies appearing increases, which could

potentially disrupt �tness function calculations. Such spurious copies could then in
ate the �tness

values and steer the GA in the wrong direction. Based on previous studies of hand-designed self-

replicating structures [Reggia93] and considering these tradeo�s, a value of �t < 10 was determined

too restrictive and �t > 20 too large for the reasons cited above. Thus a value of 15 time steps

was chosen.

The �rst time step at which �tness calculations begin (t0) is also very important, however an

easier choice to make. Since the seed structures that we deal with are very small, fast replication

cycles are very likely [Reggia93]. Such cycles are generally less than 10 time-steps, with critical

steps of the self-replication process occurring very early on, generally in the �rst �ve time steps.

Therefore, choosing a value t0 > 5 runs the risk of excluding valuable information from the �tness

function. So as not to exclude any useful information that could occur early on, t0 was chosen as

the �rst time-step. Summarizing these parameters, we have

t0 = 1; �t = 15 (4.11)

which implies that the following set of con�gurations are to be used in conjunction with �tness

calculations:

C1; C2; : : : ; C15 (4.12)

This set of con�gurations is called the set of critical con�gurations, and is de�ned as, in general,

Ct0 ; Ct0+1; : : : ; C� (4.13)

where � = t0 +�t� 1.

Outline of Fitness Calculation

An overview of the �tness function calculation is seen in the lower three blocks of Figure 4.10. Run-

ning a simulation generates 15 con�gurations, from which statistics are collected. These statistics

are described in more detail in later sections, but brie
y, they can be classi�ed as time-averaged

component counts (multiplicities), adjacency information, and replicant counts. Multiplicity val-

ues M t
v̂ record the quantity of each component type v̂ over time. Adjacency information includes

relative positioning data regarding each component type over time. Continuing downward in Fig-

ure 4.10, after collection of these statistics, �tness measures are computed and then combined in

the �tness function F to give the overall �tness value of each simulation.
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After carefully studying the behaviors of previously reported hand-designed self-replicating

structures [Reggia93], and performing experiments with an initial set of simple �tness functions,

it became obvious that a sophisticated �tness function was required to properly evaluate potential

self-replicating structures. It was concluded that the problem of �tness function design involved

multiple, independent, criteria that would need to be combined into a single �tness value. Problems

of this type are called multiobjective optimization problems.

Three independent criteria, called �tness measures here, were hypothesized and later tested.

The �rst is a growth measure, denoted fg, which correlates growth of individual component types

with high performance. The second criteria is called the relative position measure, denoted fp.

This measure is concerned with awarding �tness to component types that have a high percentage

of neighboring-cells positioned in the same manner as is seen in the seed structure. The third

criteria is one that measures isolated replicants, denoted fr. This function scans con�gurations

looking for isolated6 replicants and awarding proportionate amounts of �tness depending upon the

number of replicants seen over time.

As mentioned previously, components of the same component type have identical behavior, and

di�ering component types will generally behave in di�erently. In other words, all component of type

v̂, when presented with identical neighborhood-adjacent cells, will execute the same rule. Thus it is

appropriate to treat components within the same component type as a group that can be evolved

separately. Because of this property, two out of the three �tness measures introduced above judge

and assign �tness based on component type properties.

A surprising insight learned during the design process was that, in general, one needs to keep

relaxing �tness function criteria, instead of making it more stringent. It might be thought that by

tightening the requirements, the GA would home-in on the appropriate rule tables faster. Quite the

opposite was found to be true. By imposing less on requirements (encoded in the �tness function),

partial �tness credit is gained faster, and the GA is more free to explore the search space, resulting

in less restrictions placed on the self-replication process. For example, in calculating the relative

position measure fp, rather than using both position and orientation information, which yielded

poor results, using position-based statistics alone gave much better results. Of course, relaxing

the �tness measures too much will result in less positive reinforcement to the GA and thus is

detrimental too.

The �tness measures described above are combined to give the overall performance of the simu-

lation (Figure 4.10, bottom). This function F calculates the overall �tness value of the chromosome

being evaluated, which then is used in the selection process of the GA. Since the relative impor-

tance of each �tness measure is unknown, rather than always apportioning equal weight to each,

we de�ne the �tness measure vector as

f = (fg; fp; fr) (4.14)

and a weight vector

w = (wg; wp; wr) (4.15)

The overall �tness is the dot product of these vectors:

F = f �w (4.16)

6Isolation has a precise meaning and is de�ned in Equation 4.4 on page 55.
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For convenience, the �tness measure functions in f are each normalized to values in [0; 1], and

weights are such that wg + wp + wr = 1. Two approaches were used to set the weight values in

w: manual settings guided by experimental results, and by using a meta-level GA as described in

Section 4.7. Both approaches were successful, and experimental results are shown in Chapter 5.

Given an appropriate weight vector w, we next turn to the design of the �tness measures in f .

4.5.4.2 Growth Measure

In order for a self-replicating process to emerge, one would expect to observe, over time, increasing

quantities of the individual components. Such behavior can be seen in any of the reported hand-

designed self-replicating structures, for example in Figure 2.7 on page 21. In analyzing past self-

replicating structures it was seen that individual component counts, or multiplicities, generally

increase over time, punctuated by periods of plateaus and small decreases in value. Again using

the self-replicating structure in Figure 2.7, the graph in Figure 4.12 shows the multiplicity pro�le

over the �rst 50 time-steps. Note that the multiplicities generally increase over time. One exception

is the # component, which is not technically part of the structure, although it is used during the self-

replication process. Its multiplicity remains at zero much of the time since it appears approximately

every 10 time-steps.
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Figure 4.12: Multiplicity pro�le for self-replicating structure of Figure 2.7.

From observations like these described above, a growth measure function based on the pro-

duction of individual components was designed. It measures to what degree each component type

maintains an increasing supply of components from one time-step to the next. Recall that the

quantity called multiplicity represents the number of components of type v̂i at time t, and is de-

noted M t
v̂i
. The multiplicity data forms a � � c table, since � time-steps are used and c components
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are present in the simulation:

M1
v̂1

M1
v̂2
� � � M1

v̂c

M2
v̂2

M2
v̂2
� � � M2

v̂c
...

...
. . .

...

M �
v̂1

M �
v̂2
� � � M �

v̂c

In order to distill these values into into a single meaningful value, multiplicities are �rst converted

via a production function �v̂, which assigns �tness based on whether a given component type

increased its production or stayed the same, and no �tness if it decreased:

�v̂(t) =

8><
>:

1 if M t
v̂ > M t�1

v̂

0:5 if M t
v̂ =M t�1

v̂

0 if M t
v̂ < M t�1

v̂

0 < t � � (4.17)

Equation 4.17 shows that �v̂(t) is a function that assigns relative-worth values on the basis of

growth. For example, if there were 12 Y components at t = 5 and 14 at t = 6, then �Y(t = 6) would

be assigned a value of 1. Note how � encourages increased quantities of components from one time-

step to the next. However, it does not harshly penalize when production declines. Equation 4.17

can be thought of as awarding twice as much �tness to components that divide versus components

that do not divide, yet remain active.

The growth measure fg is then calculated by summing all �v̂ values (i.e., over all times and all

components) and then dividing by the total attainable �tness as follows

fg =
1

�c

X
v̂2V̂

�X
t=1

�v̂(t) (4.18)

The summations in the function fg total the �v̂ values earned for each component type over each

of the � = 15 time-steps. Thus fg calculates a measure of how well the supply of components

increased. One might propose simply using a function that assigns high �tness when the total

component count increases over time. However, since this does not distinguish among individual

component types, such a function will encourage growth of only one or possibly two components,

as this will satisfy such a function.

4.5.4.3 Relative Position Measure

The relative position measure is the most critical �tness measure of the three presented in this

chapter. Again, the overall goal of the three �tness measures is to encourage self-replicating be-

haviors. The growth measure approaches this goal from the perspective of supplying components

for the self-replicating process. Assuming it is successful, it is desired to position this increasing

supply of components in such a way that they in
uence each other, and that such in
uences pro-

duce self-replication. In order to encourage such positioning, it was hypothesized that over time, an

individual component should, quite frequently, �nd itself surrounded by the same components that

surrounded it in the seed structure. In other words, if components v̂i and v̂j are neighbor-adjacent

and part of a self-replicating structure S0, v̂i should regularly have v̂j positioned in the same rela-

tive manner found in S0. The function fp measures the degree to which such relative positions are

satis�ed over time.
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It is important to realize that correct relative positions do not necessarily have to occur si-

multaneously (i.e., during the same time-step) among the components of the structure in order for

partial �tness to be awarded by fp. The ability of fp to give partial �tness in this manner is critical

to providing the GA with the initial positive reinforcement needed to search e�ectively.

The seed structure S0 plays a critical role in deriving the function fp since it contains the relative

positioning information. The adjacencies contained in S0 are formulated in terms of an adjacency

vector, s which contains c elements representing the number of neighborhood-adjacent components

for each component type:

s = (sv̂1 ; sv̂2 ; : : : ; sv̂c) (4.19)

where sv̂i represents the number of components that are neighborhood-adjacent to component v̂i.

Examples of s are shown in Figure 4.13.

(a) A B s = (1; 1)

(b)
A B

C
s = (1; 2; 1)

(c)
A B

C D
s = (2; 2; 2; 2)

(d)
A B C

D
s = (1; 3; 1; 1)

Figure 4.13: Examples illustrating the adjacency vector of various seed structures.

The function mv̂(t) represents the number of neighbors of component v̂ at time t that were the

same type and in the same relative position as in the seed. The function �v̂(t) represents to what

degree, at time t, all the components of component type v̂ have the same neighbors as in the seed

and is de�ned as:

�v̂(t) =

(
0 if M t

v̂ � 1
mv̂(t)

Mt
v̂
� sv̂i

if M t
v̂ > 1

(4.20)

When M t
v̂ � 1, component v̂ is extinct or is presumably part of the seed. When M t

v̂ > 1, �v̂(t) is

the ratio of mv̂(t) to the maximum possible. As in the growth �tness measure, a � � c table of

values is generated by �:

�v̂1(1) �v̂2(1) � � � �v̂c(1)

�v̂1(2) �v̂2(2) � � � �v̂c(2)
...

...
. . .

...

�v̂1(�) �v̂2(�) � � � �v̂c(�)

We then de�ne fp to be the mean of �v̂(t) over all component types and all time-steps. Columns
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of the above table are summed and these c sums are then weighted by s as follows:

fp =
1

�
P

v̂2V̂
sv̂

X
v̂2V̂

�X
t=1

sv̂�v̂(t) (4.21)

The adjacency vector s as used in 4.21 gives higher priority to components that have more

neighbors in the seed structure. For example, the B component in Figure 4.13(d) receives a weight

of 3
6 or 50% and the other components each receive 1

6 or 17% weight.

4.5.4.4 Isolated Replicant Measure

The isolated replicant �tness measure fr correlates �tness with increasing numbers of isolated

replicants formed during the course of a simulation. In contrast to the relative position �tness

measure, fr provides little if any positive reinforcement to the GA during the beginning of the

discovery process. Its main purpose is to guide the GA toward �tter and �tter self-replicating

structures once nascent ones have been discovered. Experimental data con�rming that this occurs

is presented in Chapter 5.

Letting rt represent the number of detached replicants in con�guration Ct. We calculate the

maximum number of isolated replicants that have appeared during the entire simulation, from t = 1

to t = � . This is then scaled by a sigmoid function centered at � as follows:

fr =
1

1 + exp(�(max(rt)� �))
0 < t � � (4.22)

The constant � represents the number of isolated replicants at which the rate of increasing �tness

decreases (i.e., the in
ection point of the sigmoid). As an example, Figure 4.14 shows the scaling for

� = 4. Thus �tness is assigned at a faster rate during periods when two or three isolated replicants

are seen. The production of small quantities of such replicants is a great importance since it is

usually a sign that a viable self-replicating process has been initiated.

4.6 Convergence Criteria and Parameter Values

This last description concerning the GA design concerns the criteria for convergence and the pa-

rameter values used. Regarding convergence, the GA continues to iterate over many generations

until one of the following criteria are satis�ed.

� If the best-of-generation chromosome achieves a �tness greater than 0.9, the GA is considered

to have converged.

� Otherwise the GA continues until it reaches generation gmax.

The GA parameters used are shown in Table 4.3. Ranges of parameters denote that during

the course of experimentation, parameters were varied slightly. It has been argued in the GA

literature that using large population sizes and small numbers of generations produce better re-

sults [Goldberg89]. In Table 4.3, it can be seen that the chosen parameters do not align with this

argument. The reason for this is a practical one involving computer system resources. To be able

to compare GA performance across numerous experiments, the largest population size feasible was
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Figure 4.14: Sigmoid scaling function for isolated replicant �tness measure.

100 (keep in mind the large rule table sizes derived in Chapter 3). The main limitation was the

memory capacity and of the computers used and the enormous run times required. Given this

constraint, the number of generations gmax to run was arrived at experimentally, where it was seen

that most GAs were converging between generation 200 and 800. A value of 2000 was chosen to

allow for the rare cases in which the GA converged late.

Parameter Value(s)

nc 100

pc 0.6{0.8

pm 0.08{0.10

gmax 2000

Table 4.3: GA parameter values used in experiments.

4.7 Multiobjective Optimization

Multiobjective optimization involves the optimization of two or more independent criteria that must

be combined into a single value. In the context of the �tness calculation of F (Equation 4.16), it

is desired to optimize F by �nding an ideal weight vector w to weight the independent �tness

measures fg, fp, and fr. A second GA, called a meta-level GA [Grefenstette86], was used to �nd
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this weight vector. Thus, under the control of the meta-GA, the primary GA (as described in this

chapter) was executed repeatedly. Being that the primary GA was extremely resource intensive by

itself, to experiment with the meta-GA required that smaller GA parameters be used.

The meta-GA is a variant of the traditional GA [Davis91], and here we present a brief summary

of it. The encoding choice for the chromosomes used was 7-bit Gray-coded binary strings. The �rst

seven bits represent w1 and the subsequent seven bits encode weights w2 and w3 as follows. Let d

represent the decimal value of the latter seven bits of the chromosome. Weight w2 is expressed as

w2 = (1� w1) � d (4.23)

Then to obtain the third weight, we have

w3 = 1� (w1 + w2) (4.24)

Given the above encoding method, a population size of 20 7-bit chromosomes was chosen. As

mentioned earlier, computer resources limited the size of the populations that were feasible to run.

After decoding each chromosome into a weight vector w, the \primary" GA is run using the decoded

weight vector. The �tness function employed for the meta-GA was the fr �tness measure described

in section 4.5.4.4. Thus if a \primary" GA run was able to �nd isolated replicants, this would give

high �tness to a speci�c weight vector, which would then be bred into the next population of the

meta-GA.
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Chapter 5

Automated Discovery of Self-Replicating Structures

This chapter presents the results and analysis of the experiments involving automatic discovery of

self-replicating structures in both cellular automata and e�ector automata models. Using the ge-

netic algorithm designed in Chapter 4, experiments were conducted which show, for the �rst time,

that self-replicating structures can be automatically produced. Representative samples of discov-

ered self-replicating structures are shown using varying seed sizes, The amount of self-replicating

structures discovered through the experiments described in this chapter, is shown to be statistically

signi�cant. Performance graphs showing the behavior of the genetic algorithm are presented and

give further insight into how the �tness measures work e�ectively in searching the space of rule

tables. Since this is the �rst work to produce hundreds of self-replicating structures, a new quali-

tative classi�cation system is devised to categorize the behavior of self-replicating structures. The

experiments themselves are discussed in Section 5.1 and the results are presented in Section 5.2.

The chapter concludes in Section 5.3 with a discussion of the software system that was used to

conduct the experiments.

5.1 Experiments

In order to understand the results presented in this chapter, the goals of the experiments and the

experimental method are brie
y described. The primary goals are as follows:

1. The fundamental goal is to show that it is possible to automate the process of creating self-

replicating structures in three cellular space automata models. To accomplish this, it must

be shown that statistically signi�cant quantities of such structures were produced. If such a

goal is achieved, the experiments should allow investigation into how to increase the numbers

of discovered self-replicating structures.

2. Given the vast search spaces and unknown �tness landscapes of the cellular space models

studied, another goal is to gain an understanding of what impediments exist when searching

for self-replicating structures. This involves issues concerning the genetic algorithm design,

choice of seed structure, and cellular space model.

3. With su�cient quantities of self-replicating structures discovered, a third goal is to analyze

the underlying processes of self-replication from quantitative and qualitative perspectives.
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An overview of the technique that was used in performing the experiments reported in this

chapter is depicted in Figure 5.1. As mentioned earlier in Section 2.3, the genetic algorithm is a

stochastic search method that is not guaranteed to converge to the global optimum. Therefore,

the approach taken here is to execute numerous independent GAs, and use statistical methods to

analyze the results of the set of GAs. As it is used here, one \experiment" is taken to be a set

of 100 trials, with each trial being an identical GA except that the stream of random numbers

di�ers from one instance to the next. The top box of Figure 5.1 depicts the common inputs to

all of the independent GAs. While executing, each GA stores the highest-�tness rule table it has

ever evaluated, and stops when the convergence criteria (see Section 4.6 on page 73) is met. At

that point, the highest-�tness rule table is its output (Figure 5.1, middle). The outcome of each

trial is either success (a self-replicating structure found) or failure. Such a decision must be made

by human examination of a subsequent simulation based on each rule table, since the rule table

with the highest �tness value may not always conform to the requirements of De�nition 4.1. The

quantity of self-replicating structures found divided by 100 (trials) is called the yield. The goal

of a given experiment is to maximize the yield. The computational load of a single experiment

is enormous since 100 instances of the GA must be run. Since each GA processes up to 200,000

�tness evaluations, this equates to a total of 20,000,000 possible �tness evaluations needed for a

single experiment. To reduce the total execution time needed to run one experiment from weeks to

days, software that runs on a parallel architecture was designed and implemented, and is discussed

in Section 5.3.

The experiments conducted can be classi�ed according to the size of the seed structure used.

With the computational resources available, structures having two, three, and four components

were feasible to use in the experimental method described above (running 100 genetic algorithms

each with a population of 100 large rule tables presents an enormous computational load). Exper-

iments using four-component structures required approximately one week of dedicated time on a

40-node Alpha-processor farm supercomputer. The limitations on this resource allowed for only

three experiments to be conducted using four-component seed structures.

For each seed structure, three cellular space models were used: the E�ector Automata (EA)

model (introduced in Chapter 3), and two variations of the Cellular Automata (CA) model. We call

the CA model using state-sensitive input the \standard" CA model, since it is identical to what has

been used in research to date. We include it in our experiments because it is has been studied the

most with respect to self-replicating structures and it is desirable to see how it performs compared

to the other models introduced in this thesis. The other CA model uses the paradigm of component-

sensitive input (a new technique introduced in Section 3.2) which is a method for reducing rule

table size by having automata ignore orientations of any neighboring weakly rotation-symmetric

cell states. The speci�c EA model used in the experiments, which uses component-sensitive input,

is described in Section 4.1. An experiment using the state-sensitive version of the EA model would

have nearly the same computational load as a CA model with state-sensitive input. Given the

limitations of the computing facilities available, it was decided to conduct the state-sensitive CA

experiments instead of the state-sensitive EA experiments, since the state-sensitive CA is the most

researched model for self-replicating systems.
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Seed Structure,
Fitness Functions,
GA Parameters

100 GA Trials GA1 GA2 GA100

Highest-Fitness
Rule Table

From Each Trial

Examine by Simulation

Select Non-trivial Self-
Replicating Structures

that Satisfy Def. 4.1

Calculate Yield

Figure 5.1: Overview of experimental method.

5.2 Experimental Results

With the goal of consistently discovering self-replicating structures in an automatic manner, the

most important metric to be taken from the experimental results is the yield { the percentage of

self-replicating structures found during an experiment. In this section, we present and analyze the

yields found. We �nd that by using the new technique of component-sensitive input, the highest

yields are obtained in the CA model. It is also seen that the \standard" CA model (i.e., having

state-sensitive input) is not the best choice for evolving self-replicating structures. The correlation

coe�cients between the yields and the search space sizes are calculated and suggest a potential

correlation between decreasing search space sizes and increasing yields.

5.2.1 Results from Experiments

In Table 5.1, the yield of self-replicating structures found during 100 trials are presented for the

cellular space models and seed structures studied. The names \CACSI" and \CASSI" denote the

cellular automata model using component-sensitive input and state-sensitive input, respectively.

Beginning with the 2-component structures, it is seen that high yields were produced. The
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Yields

Seed Model

Structure EA CACSI CASSI

A B 0.43 0.93 0.49

A B

C
0.08 0.22 0.03

A B C

D
0.00 0.02 0.00

Table 5.1: Experimental results showing the highest numerical yields found from each of

the experiment conducted.

CA model with component-sensitive input had the most successful results with 93 discovered self-

replicating structures. While each of the 93 rule tables are distinct, many of the self-replication

processes were qualitatively similar. The other two models show comparable yields of 0.43 and

0.49, however the qualitative behavior of the EA structures is more diverse than that of the CASSI

structures. The reason this occurs is due to the fact that each CA rule in this model can transition

to one of k = 3 states, while each EA rule can transition to one of jAj = 210 possible actions,

allowing for a more diverse rule table.

For the 3-component experiments, it is seen that the CA model with component-sensitive input

again had the highest yields, followed by the EA model. The state-sensitive input CA model had a

yield of 3%, which is shown, in Section 5.2.4, to not be considered statistically signi�cant at the 95%

level of signi�cance. Three-component yields were lower than that for 2-components, suggesting

that the discovery process is more di�cult for larger structures. This agrees with the intuition that

self-replication process for 3-component structures is more complex than for structures having two

components.

In the 4-component experiments, the CACSI model had the only non-zero yield. Although not

considered statistically signi�cant at the 95% signi�cance level, it is of interest that the GA was

able to discover 2 self-replicating behaviors in only the CACSI model, the model which gave the

best results in the other experiments.

These results suggest that by using the component-sensitive input paradigm, higher yields of

self-replicating structures are discovered. For 3-component structures, it is also seen that the EA

model produced more self-replicating structures than that of the \standard" CA model, CASSI (the

same model commonly used in the CA literature). Such a result implies that the EA model is

advantageous with respect to the automatic discovery of self-replicating structures.

One of the potential reasons why the highest yields occurred in the CACSI model is that it

has the smallest search space size of the three models, and thus the GA may have a slightly

easier search task. Table 5.2 presents the search space sizes jDk
nj derived in Chapter 3 for the

experiments conducted. The search space sizes are enormous in all instances, however we note the
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that relative size di�erences are also extremely large. To quantify the correlation between increasing

yields and decreasing search space sizes, we calculate the sample correlation coe�cient r between

corresponding rows of Tables 5.1 and 5.2. Values of r are shown in Table 5.3, and all are seen to be

negative, indicating that as the search space search increases, the yields decrease. However a value

of r = �1 would be needed to show a strong correlation of this type. With values of r ranging

between �0:2 and �0:5 we can posit that there is some degree of correlation, but not strongly so.

Search Space Size, jDk
nj

Seed Model

Structure EA CACSI CASSI

A B 10376 10177 1014110

A B

C
101783 10933 10103454

A B C

D
105806 103279 10436864

Table 5.2: Approximate search space sizes for the experimental results.

Seed

Structure r

A B -0.237

A B

C
-0.406

A B C

D
-0.499

Table 5.3: Values for the sample correlation coe�cient r used to measure the correlation

between search space size and experimental yields. Negative values indicate

that as the search space search increases, the yields decrease.

5.2.2 Discovered Structures

This section presents representative samples of the automatically discovered self-replicating struc-

tures. A naming convention is established so that each structure can be given a unique name and
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the underlying cellular space model can be easily identi�ed. Structures are then presented divided

according to the underlying cellular space model used. Self-replicating structures in cellular au-

tomata models are presented �rst, followed by structures in e�ector automata. For convenience,

discussion of the behaviors of the self-replicating structures is placed in �gure captions. Appendix C

contains a small archive of further self-replicating structures.

5.2.2.1 Naming Convention

In order to identify the self-replicating structures presented here, a naming system from the lit-

erature is adopted. In [Reggia93], self-replicating structures in cellular automata are uniquely

identi�ed using the following convention. Names begin with the type of loop the structure forms

(SL, sheathed loop; UL, unsheathed loop) followed by the number of components that comprise the

structure, the rotational symmetry of the individual cell states (S, strong; W, weak), the number of

possible states in which a cell may be, and the type of neighborhood (V, von Neumann; M, Moore).

For example the structure named UL06W8V1, which appears as

O O

L > O O

is an unsheathed loop comprised of six components, has weakly symmetric cell states with each

assuming one of 8 possible states, and its transition function is based on the von Neumann neigh-

borhood. This notation may appear somewhat cumbersome, however it is systematic and quite

convenient when identifying structures. In Appendix C where numerous self-replicating structures

are cataloged, the naming system makes it easy to identify many properties of the cellular space

quickly.

The above notation is augmented to allow for the structures studied in this thesis. To distinguish

between the techniques of state-sensitive input and component-sensitive input, the letter \C" is

added prior to the number of states �eld to denote the type of input. Because state-sensitive input

has been the standard model for studying cellular automata, the notation only changes for the

component-sensitive case. The following examples illustrate the di�erence

UL3W13V state-sensitive input, CA

UL3WC13V component-sensitive input, CA

The above examples were for the CA model. To accommodate EA models, which, by de�nition

have weak rotational symmetry, we allow the rotational symmetry �eld to contain an \E" to denote

e�ector automata. To illustrate:

UL3WC13V CA, weak rotational symmetry

UL3EC13V EA, (weak rotational symmetry by de�nition)

The last modi�cation needed is the manner in which identical structures having di�erent rule tables

may be distinguished. The convention we adopt is to subscript the name with a number, where

the number is arbitrary and only for identi�cation purposes. For example, multiple 3-component

self-replicating structures in the EA model may be distinguished,

UL3EC13V1; UL3EC13V2; : : :

1A simulation of UL06W8V is shown in Figure 2.7 on page 21 of this dissertation.
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The experiments reported in this chapter, were performed using three models and three seed

structures. The reasons for the choices of particular of seed structures were discussed in Sec-

tion 4.5.4.1. Table 5.4 shows the structure names along with the seed structures and models.

Seed

Structure EA CACSI CASSI

A B UL2EC9V UL2WC9V UL2W9V

A B

C
UL3EC13V UL3WC13V UL3W13V

A B C

D
UL4EC17V UL4WC17V UL4W17V

Table 5.4: Naming convention as it applies to the seed structures used in experiments.

5.2.2.2 Representative Self-replicating Structures

Representative examples of the self-replicating structures discovered during the experiments appear

on the following pages.

82



AB

t=0

B

A

B

BB

t=1

AA

AA

B

B

B

B

t=2

B

B

B

B A

A

A

A

B

B

B

B

B

B

BB

B

B

BB

t=3

A

A

A

A A
A

A

A
A

A

AA

A

A

AA

B

B
B

B

B
B

B

B

B

t=4

B

B

B

B A

A

A

A

B

B

B

B

B

B

BB

B

B

BB

t=5

A

A

A

A A

A

A

A

A

A

AA

A

A

AA B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

t=6

B
B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

A

A

A
A

A

A
A

A

A

A

A

A

A

A

A

A

B
BB

BB

B

B

B

B

B

B

B

B

B

B

BB

B

B

B

B
B

B

B

B

BB

B
B

B

BB

B

B

BB

B
B

B

B

B

B

BB

B

B

BB

t=7

A

A

A

A

A

A

A

A

A

A
A

A

A

A

A

A A

AA

AA

A

A

A

A

A

A

A

A

A

A

AA

A

A

A

A

A

A

A

A

AA
A

A

A

AA

A

A

AA

A

A

A

A

A

A

AA

A

A

AA

B

B
B

B
B B

B
B B

B

B
B

B

B

B B

B B

B

B

B
B

B
B

B
B

B

B
B

B

B

B

B

B

B

B

B

t=8

Figure5.2:Self-replicatingstructureUL2WC9V4.Identicalbehaviortowhatisseenhere

occurredofteninthediscovered2-componentCACSIstructures.Thetwo-

stepself-replicationprocessbeginsatt=1wheretheBcomponentisseen

dividedintofourcopies.Att=2,theAcomponentdoesthesameandfour

replicantsareseen.Crowdingprevents8replicantsfromappearingatt=4,

butthencrowdingsubsides,and16replicantsappearatt=6.

83



A
BC

t=
0

AB
A
C

C

t=
1

AB

B

A
C

A

C

t=
2

B

B

A
C

A C

C

t=
3

A

A

B

B

B

A
C

C

A

CA

C

C

t=
4

A

A

B

B
B

B

B

A
C

A

C

A
C

A

A

C

C

t=
5

A

B

B B

B

B

A
C

A C

C

A

C
A

AC

C

C

C

t=
6

A

A

A
A

A

B

B

B
B

B

B
B

B

A
C

C

A

CA

C

C

A
C

A

C

A

C

C

A
C

CA

C

t=
7

A

A A

AB

B

B

B

B

B

B

B

B

B

B

B

A
C

A

C

A

A

A

C
A

C

A

C
A

A

C

A

A

C

C
A

C

C

t=
8

F
ig
u
r
e
5
.3
:
S
elf-rep

lica
tin

g
stru

ctu
re

U
L
3
W
C
1
3
V
1 .

T
h
is
stru

ctu
re

ex
h
ib
its

a
5
-step

rep
li-

ca
tio

n
p
ro
cess,

a
n
d
b
eg
in
s
p
ro
d
u
cin

g
th
e
seco

n
d
rep

lica
n
t
(t=

4
)
w
h
ile

th
e

�
rst

is
still

fo
rm

in
g
.
T
h
u
s
th
e
�
rst

iso
la
ted

rep
lica

n
t
a
p
p
ea
rs

a
t
t=

5
a
n
d

th
e
seco

n
d
a
t
t=

8
.
T
h
e
seed

stru
ctu

re
m
ov
es

d
ow

n
w
a
rd

ov
er

tim
e
a
n
d
th
o
se

rep
lica

n
ts

w
h
ich

a
re

ro
ta
ted

m
ov
e
in

th
e
o
th
er

th
ree

p
rin

cip
a
l
d
irectio

n
s.

8
4



ABC
D

t=0

B

D

A

D

C
D

t=1

B

B

B

D

C

D

C

A
D

D

C
D

t=2

D
C

B

B

B

B

B

D

C

C

A
A DA

A
D

C
D

C
D

t=3

DC

B

B

B

B

B

C

D

A

C

CB

C
D

A
D

A

A
D

A

C
D

C
D

t=4

C
AB

B

B

B

B

B

B

A

D

C
A

A

D
AC

B

CD

C

A

A D
A
D

A

A
D

A

D
B

C
D

C
D

t=5

C CA

B

D

C

B

B

B

B B

B

B

B

B

B

A

A

C

A

C

D
AC

D

C

D

D

A
C

C
D

A
D
A
D

A

A
D

A

A
D

C
D

C
D

t=6

A A
A

A

AA B

B

BB
B

B

B

B

B

B

B

B

B

D
C

A

A

C
A

A

A

A

D
AC

D
D

C
D
C

D

A
C

A

A D
A
D
A
D

A

A
D

A

C
D

A
D

C
D

C
D

t=7

C A

B

A

C
C

C

AA

D

B

D

D

B

B

B

B

B

B

B

B

B

B

B

B

B

D

A A

C
AA

D B

C
D

B

C

A
A

C

A

D

C

D
AC

D

C
D

C

D
C

AD

A
D

C
D

A

A

D
A
D
A
D

A

A
D

A

A

D

C
A
D

C
D

C
D

t=8

Figure 5.4: Self-replicating structure UL4WC17V2. The 4-component seed structure moves

downward over time. Three isolated replicants can be seen at t=5; subse-

quently, each moves away from the center.
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Figure 5.8: Self-replicating structure UL3EC13V7. The seed structure moves to the left

throughout while producing replicants that are rotated 90� clockwise. Two

unused C components at t=3 disrupt the self-replication processes of the two

structures seen there (by way of collisions). At t=6 there are no such disrup-

tive components, and the two structures seen there continue unimpeded.
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Figure 5.9: Self-replicating structure UL3EC13V15. The seed structure produces the nec-

essary components for the �rst replicant at t=2, however it takes until t=5 for

these components to form an non-isolated copy. At t=7 the the �rst replicant

is seen isolated.
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5.2.3 Other Search Techniques

Experiments have shown that search techniques such as multiple-restart stochastic hillclimbing

(MRSH), population-based incremental learning (PBIL) and simulated annealing (SA) are e�ective

in searching large solution spaces using function optimization [Baluja95, Ginsberg93]. This section

presents the results of applying two of these algorithms, MRSH and SA, to the task of automatic

discovery of self-replicating structures in the EA cellular space model.

MRSH is a method of iterative optimization of static functions which has been successfully

applied to standard problems solved by genetic algorithms [Baluja95]. The MRSH algorithm as

applied to the task of discovering self-replicating structures is shown in Figure 5.10. Three variations

of this algorithm were tried. In the �rst experiment, a list of rule changes attempted without

improvement is maintained. These rule changes are not attempted again until a better solution is

found. Recall from Chapter 3 that j�j is the rule table size. If 10 � j�j rules have been tried without

improvement, a completely new rule table is randomly generated and the search is continued from

there. The second experiment is the same as the �rst except restart (the process of randomly

generating a completely new rule table) is forced 5 times during the search at equally spaced

intervals. The third experiment is the same as the second except that if the rule table being

tried is better than "or equal to" the best, it is adopted. To be consistent with the experiments

using genetic algorithms the number of iterations was set to the population size multiplied by the

number of generations (200 � 100 = 200; 000). One hundred experiments were run each with a

di�erent random number seed, for each of the variations of MRSH. One self-replicating structure,

shown in Figure 5.12 on page 93, was discovered using the second variation of MRSH.

R  RandomlyGenerateRuleTable

Best  evaluate (R)

loop NumIterations

N  ChangeRandomRule(R)

if (evaluate(R) > Best)

Best  evaluate(R)

R  N

end

Figure 5.10: Overview of the MRSH algorithm.

The simulated annealing algorithm is similar to MRSH except that at the beginning of the

search, new rule tables are adopted almost randomly regardless of whether they are better. As the

search proceeds the probability of accepting worse rule tables drops and the probability of accepting

better rule tables rises. Simulated annealing derives its name from metal-casting techniques where

molten metal is slowly cooled to produce a less brittle product. Likewise, in the simulated annealing

algorithm the parameter T is slowly changed so that towards the beginning of the algorithm, the

search can proceed in ways that allow it to break away from local maxima by taking steps towards

rule tables with lower �tnesses. Figure 5.11 shows the algorithm for simulated annealing. To be

consistent with the genetic algorithm experiments, 100 experiments were run using the following

parameters: 200,000 iterations, Tmax = 0:2, Tmin = 0.02, r = temperature decay rate = 0.8, k =
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time per temperature = 768 (rule table size, j�j). No self-replicating structures were found using

these parameters in the simulated annealing algorithm.

1. (Restart) Set T  Tmax. Select a rule table R at random and

evaluate it.

2. (Stochastic hillclimb) Create a new rule table N by randomly

changing one rule in the current rule table. Select the new rule

table N with probability:

1:0� (1:0 + exp((new�tness� �tness)=T )))

Repeat this step k times.

3. (Anneal/Convergence Test) Set T  rT . If T � Tmin, go to

step 2. Otherwise go to step 1.

Figure 5.11: Overview of the simulated annealing algorithm.

For the parameters discussed above, these results give an indication that genetic algorithms

outperform MRSH and SA for the task of discovering self-replicating structures. One di�culty

however in comparing these algorithms is that each is de�ned by control parameters, and it is

prohibitively expensive to thoroughly explore the parameters. Most of the work in this thesis

concentrates on using genetic algorithms for the automatic discovery of self-replicating structures,

since genetic algorithms have been shown to be particularly adept at �nding su�ciently good

solutions instead of a global optimum [Mitchell96].
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Figure 5.12: Sole self-replicating structure UL3EC13V57 discovered by multiple restart

stochastic hillclimbing (MRSH) algorithm. Original seed structure moves

upwards while replicants appear rotated 90 degrees counterclockwise. Two

isolated replicants can be seen at t = 8. The qualitative behavior of

UL3EC13V57 is quite similar to that of the structures discovered by the ge-

netic algorithm.
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5.2.4 Statistical Testing of Results

Sections 5.2.1 and 5.2.2 demonstrate for the �rst time that it is possible to automatically discover

self-replicating structures in cellular space automata models. In this section a statistical signi�cance

test is presented regarding the yields obtained from the experiments conducted. First, a test to

establish that the results from the genetic algorithm are statistically independent from other search

techniques is described. Then we use the same test to show that statistically signi�cant yields of

self-replicating structures were found in comparison to random search.

In comparing the results from two search algorithms X and Y , it is desired to calculate the sig-

ni�cance of the di�erences in the results. Using the tests described below, we can determine, at the

95% con�dence level, when the di�erence in performance between the two algorithms is signi�cant

(the better-performing algorithm is signi�cantly better), or that there is no signi�cant di�erence

between X and Y . Statistics are calculated from the performance data, which are organized into

2� 2 tables arranged as shown in Table 5.5.

# successes # failures

X a b

Y c d

Table 5.5: 2� 2 table for statistics calculation.

The well{known Chi-Square statistic can be used to check for e�ectiveness only when each cell

of the table is greater than three. In other cases, we employ Fisher's Exact Test [Kanji93] with p

representing the signi�cance level, and a, b, c, and d are values shown in Table 5.5. The signi�cance

level is calculated as follows:

p =
(a+ b)!(c+ d)!(a + c)!(b+ d)!

(a+ b+ c+ d)!
�

1

a!b!c!d!
(5.1)

The statistical test is set up using the null hypothesis H0 which states that X did not in
uence the

results of the experiment. In other words, the number of successes produced by X could have come

from either X or Y . The alternative hypothesis H1 states that there is a statistically signi�cant

di�erence between X and Y . In comparing the genetic algorithm to the MRSH algorithm in

Section 5.2.3 we have the following table:

# successes # failures

GA 8 92

MRSH 1 99

Using Equation 5.1, we calculate p to be 0.017. Since 0:017 < 0:05 at the 95% signi�cance level,

we reject H0 and conclude there is a statistically signi�cant di�erence between applying GA versus

MRSH.

One of the results of each experiment is the yield of discovered self-replicating structures. An

important analytical measure of these results is the statistical signi�cance of the yields obtained. In

other words, comparing the yield found using the genetic algorithm in an experiment to the yield

found by chance via random search. For every experiment that was run, comparable trials using
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random search was also tried. In each trial of random search, zero self-replicating structures were

produced2. Thus we employ Fisher's Exact test (presented above) in the following manner. Let d

represent the number of replicants discovered by the GA. Thus the 2� 2 table can be written:

# successes # failures

GA d 100 � d

Random Search 0 100

It is relatively easy to show that when d = 4 successes (4 self-replicating structures discovered in

100 trials), p=0.061, and with d = 5 successes, p=0.029. Thus a yield of 5 or more self-replicating

structures is considered statistically signi�cant at the 95% signi�cance level. For the experimental

results presented in Table 5.1 (page 79), it is seen that some yields are not statistically signi�cant

at the 95% signi�cance level. For example, in the 3-component experiments, while the 8% yield

from the EA model is statistically signi�cant, the 3% yield from the CASSI model is not. Also,

all of the 2-component experiments and none of the 4-component experiments gave statistically

signi�cant results at the 95% signi�cance level.

5.2.5 Classi�cation of Self-replication Processes

In this section we introduce a qualitative classi�cation system for the self-replicating structures

produced by the experiments described in this chapter. This system is thought to be widely

applicable to other 2-D cellular space models using the von Neumann neighborhood and having

square tessellations. Such a classi�cation is useful since it draws attention to the many classes of

self-replicating behavior that emerged in the experiments, and because it provides evidence that

the �tness measures derived in Chapter 4 were not strongly biased towards a single, speci�c self-

replication process. Prior to this research, it would have been di�cult, if not impossible to identify

a classi�cation system mainly due to the fact that the number of manually-designed self-replicating

structures reported in the literature totals less than 30.

The classes of behavior became apparent during observations of animated sequences of the self-

replicating structures. Table 5.6 lists the names of the classes and an example structure of each class.

The classes shown are divided into two sections: one for processes and one for colonies. Process

classes are distinguished by process of self-replication that the structure exhibits. Colony classes

refer to the shape of the formed colony. These classi�cations are not exclusive { certain structures

can be classi�ed into more than one class. The Process classes of behavior for self-replicating

structures are described as follows:

� Trivial { characterized by simultaneous splitting of all components to form two distinct copies

of the seed structure during the �rst step in the replication process. A more detailed discussion

of this is found in Section 4.3.

� Proli�c { a structure produces replicants every 2 time steps.

2This is not surprising. For example, assume that there are 106 rule tables that promote self-replication in a

certain EA model with a search space size of 102000 . Then the probability of �nding such a rule table by random

search is 10�1994 which can be approximated as zero.
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� Mass-preserving { the individual components that comprise the parent structure and replicant

remain active at each time step in the self-replication process.

� Complex { the self-replication process requires at least 2�(number of components comprising

the structure) time steps to self-replicate.

� In-place { during the self-replication process, the structure remains in place, possibly rotating,

� High Density { numerous replicants are produced from the seed structure, but these replicants

are unable to self-replicate themselves due to a high density (crowding) of components.

The Colony classes are concerned with the shape the colony forms and are described as follows:

� Linear { the colony forms along a line, expanding outwards in opposite directions.

� Rectangular { the colony forms a rectangular shape.

� Irregular { the colony does not form an identi�able geometric shape.

Process Classes Example Page No.

Trivial UL3W13V25 97

Proli�c UL2EC9V3 98

Mass-preserving UL3EC13V7 99

(Non-Mass-preserving) UL4WC17V1 100

Complex UL3EC13V15 101

In-place UL3EC13V8 102

High Density UL3WC13V5 103

Colony Classes Example Page No.

Linear UL3EC13V21 104

Rectangular UL2E13V21 105

Irregular UL3EC13V5 106

Table 5.6: Classes of self-replicating structure behavior.
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Figure 5.15: Example of the \mass-preserving" process class (structure UL3EC13V7). It

is seen that newly-created components persist at each time step during the

replication process.
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101



A
BC

t=
0

C B
A BC

t=
1

B

A
BC

C
AC

t=
2

C B

B

A BC

CA

t=
3

B

A
BC

C

B

AC

CA

t=
4

C B
A BC

B
C

A

t=
5

C
B

B

A
BC

C
AC

B

C

A

t=
6

A

B

C B

B
CC

B

A BC

CA

C
A

t=
7

B

A

C
B

BC

A

B

C

B

C

C

B

AC

CA

A

t=
8

F
ig
u
r
e
5
.1
8
:
E
x
a
m
p
le
o
f
\
in
-p
la
ce"

p
ro
cess

cla
ss

(stru
ctu

re
U
L
3
E
C
1
3
V
8 ).

T
h
e
�
rst

rep
li-

ca
n
t
is
co
n
stru

cted
a
t
th
e
o
rig

in
o
f
th
e
co
o
rd
in
a
te

sy
stem

u
n
til

t=
6
w
h
en

it

b
eg
in
s
to

m
ov
e
u
p
w
a
rd
s.

1
0
2



A
B C

t=
0

BA C
A t=
1

B

B

A

A
C

C
A t=

2

B

B

B

A

C

C

A

A
A C

A

t=
3

B
B

B

B

B

A

A

C

C

C

A
AC

A

A
C

C
A

t=
4

B

B

B

B

B

B

B

A

C

C

C

A

A

C

A

C

C

A
C

C

A
A

A C
A

t=
5

B

B

B

B

B

B

B

B

B

A

A

C

C

C

A

A

C

C

A C
AC

A

A
C

A

C

AC

A
C

C
A

t=
6

B

B

B
B

B

B

B

B

B

B
B

B

A
C

C

C

A

A

C

C
C

C

A
A

C
A

C A

C

C
A

C

A
C

C

A
C
A

A

A C
A

t=
7

B

B

B

B

B

B

B

B

B

B

B

B

B

B

A

A

C

C

C

A

A

C

C

C

C

A

A

C

C

C

A

A

C
A

C
AC

A

A
C

A

C

A
C

C

AC

A
C

C
A

t=
8

F
ig
u
r
e
5
.1
9
:
E
x
a
m
p
le

o
f
\
h
ig
h
-d
en
si
ty
"
p
ro
ce
ss

cl
a
ss

(s
tr
u
ct
u
re

U
L
3
W
C
1
3
V
5
).

S
ta
rt
in
g

a
t
t=

3
,
th
e
se
ed

st
ru
ct
u
re

p
ro
d
u
ce
s
a
n
ew

re
p
li
ca
n
t
ev
er
y
o
th
er

ti
m
e-
st
ep
.

H
ow

ev
er
,
th
es
e
re
p
li
ca
n
ts
a
re
o
n
ly
a
b
le
to

m
ov
e
a
n
d
ca
n
n
o
t
fu
rt
h
er
re
p
li
ca
te

d
u
e
to

cr
ow

d
in
g
co
n
d
it
io
n
s.

1
0
3



AB
C

t=0

C
B

A

A

B
C

t=1

A

B
C

A

B
C

t=2

C
B
A C

B

A

A

B
C

A

B
C

t=3

A

B
C

A

B
C

t=4

C
B

A C
B

A

A

B
C

A

B
C

t=5

A

B

A

B
C

C

A

B
C

A

B
C

t=6

C
B

A

C
B

A

C

C
B
A

B

A

A

B

A

B
C

C

A

B
C

A

B
C

t=7

A

B
C

A

B
C

t=8

Figure 5.20: Example of \linear" colony class (structure UL3EC13V21). The colony ex-

pands outward from its center, while the entire colony simultaneously moves

towards the upper left.
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Figure 5.21: Example of \rectangular" colony class (structure UL2EC9V7). The four repli-

cants produced at t=3 de�ne the rectangular shape of the colony, and sub-

sequent time steps show the colony's expansion.
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5.2.6 GA Performance

In the context of genetic algorithms, a performance graph [Davis91] is a plot of �tness versus

generations. To gain a deeper understanding into the behavior of the genetic algorithm over time

and speci�cally how the �tness function F behaves, GA performance graphs of the behavior of

individual �tness measures are shown in Figures 5.23{5.28 (pages 108{111). The six GA runs

chosen are identical with the exception of the stream of random numbers employed. Out of the

100 GA runs that comprise an experiment, these six were chosen since all of them resulted in the

discovery of 3-component EA self-replicating structures of the form UL3EC13V. The overall �tness

function that was used (for all GA runs) in the experiment was

F = 0:05fg + 0:75fp + 0:20fr (5.2)

where, as described in Section 4.5.4.1, fg is the �tness measure for growth, fp is for relative po-

sitions, and fr is for isolated replicants. The weights chosen in Equation 5.2 were arrived at by

experimentation in this case3. A reasonable interpretation of Equation 5.2 is that the overall �tness

value for a chromosome (i.e., rule table) should mainly come from the relative positions of compo-

nents. Less important are the isolated replicants and growth of components. However, there is a

deeper interpretation. What actually happens, as we shall see, is that the presumably insigni�cant

growth measure plays a key role in getting the GA primed, the relative position maintains a steady

increase in F , and the isolated replicant measure serves to lock-in a newly discovered self-replicating

structure. These behaviors suggest that the three parts of the �tness function support each other

in complex and unanticipated ways.

The GA performance graphs of Figures 5.23{5.28 plot values of F , fg, fp, and fr (Equation 5.2)

for the highest ranking chromosome of each generation (also called the \best-of-generation" chro-

mosome). As discussed in Section 4.5.2, elitism is used whereby the best two chromosomes are

copied directly from generation g to generation g+1. Thus plateaus can be seen on the GA perfor-

mance graphs indicating that an elite chromosome went \unchallenged" for a certain period of time.

Inspecting the six performance graphs for general trends, we make some general observations. The

growth measure fg is generally the most volatile, and this agrees with intuition: since it contributes

the least in guiding F , large 
uctuations are easily tolerated and have a lessened e�ect on F . The

relative position measure fp remains the highest contributor in most cases, which is not surprising

since it has 75% weight in F , and thus the overall search, to some degree, is spent optimizing

fp. The isolated replicant measure fr, being the hardest �tness measure to satisfy, generally stays

e�ectively at zero for, in general, hundreds of generations until the other measures discover a rule

table that promotes elements of a self-replicating process.

During roughly the �rst 50 generations, which we call epoch I, the growth measure increases

rapidly, albeit sporadically, to help get the GA \boot-strapped." The growth measure is thought to

be the easiest way of gaining �tness value since it is only concerned with quantities of components

and not positioning. Thus, even at only 5% weight, it contributes to the early stages of the GA. It

is hypothesized that such action seeds the population of rule tables in the GA with a large quantity

of DIV (divide) actions, so that component production is encouraged. Between generations 50 and

500 (epoch II), the growth measure becomes less volatile, and a clear trend is seen in the ordering

3Other times the meta-level GA was used to adapt these weights.
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of the curves:

fp > fg > fr (5.3)

Near the end of epoch II, it can be seen that many of the overall �tness values F are at their

�rst plateau. This suggests that a strong chromosome has emerged that has good growth and

positioning of components, yet it does not self-replicate. The last epoch (epoch III) occurs after

generation 500 when the isolated replicant measure sharply increases indicating isolated replicants

have appeared, and the seed structure may have exhibited self-replication.

We also note that our justi�cation for choosing 2000 as the maximum number of generations to

run is again supported by these curves. There is typically a sharp increase in the isolated replicant

measure fr upon discovery of a self-replicating structure. As seen from the performance graphs,

such increases occur between generations 500 and 1500.
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Figure 5.23: Individual �tness measure values for the best-of-generation chromosome

during GA discovery of UL3EC13V71. The overall �tness function is F =

0:05fg + 0:75fp + 0:20fr.
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Figure 5.24: Individual �tness measure values for the best-of-generation chromosome

during GA discovery of UL3EC13V72. The overall �tness function is F =

0:05fg + 0:75fp + 0:20fr.
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Figure 5.25: Individual �tness measure values for the best-of-generation chromosome

during GA discovery of UL3EC13V73. The overall �tness function is F =

0:05fg + 0:75fp + 0:20fr.
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Figure 5.26: Individual �tness measure values for the best-of-generation chromosome

during GA discovery of UL3EC13V74. The overall �tness function is F =

0:05fg + 0:75fp + 0:20fr.
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Figure 5.27: Individual �tness measure values for the best-of-generation chromosome

during GA discovery of UL3EC13V75. The overall �tness function is F =

0:05fg + 0:75fp + 0:20fr.
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Figure 5.28: Individual �tness measure values for the best-of-generation chromosome

during GA discovery of UL3EC13V76. The overall �tness function is F =

0:05fg + 0:75fp + 0:20fr.

Fitness Measure Interaction

A simple experiment was constructed to determine if each of the three �tness measures, by them-

selves, can promote development of a self-replicating structure. If none of the individual �tness

measures are able to produce such a structure, this suggests that the measures are dependent on

each other. The three experiments involve setting the weight vector w = (wg; wp; wr) as follows:

w = (1; 0; 0) Experiment 1

w = (0; 1; 0) Experiment 2

w = (0; 0; 1) Experiment 3

Experiments were conducted in the same manner as described in Section 5.1 using both EA

and CA models with 3-component structures. The results were that zero self-replicating structures

were discovered, suggesting that �tness measures interact and depend on each other to promote

self-replicating behaviors.

5.3 Software System

The experimental method described in Section 5.1 was implemented in a software system designed

by the author. The system was developed to be 
exible, e�cient, robust, and easy to use. Speci�c

emphasis was placed on making the system general enough to allow a wide range of both CA and

EA models to be simulated in a standalone manner as well as under a genetic algorithm. The main

limitation in running genetic algorithm experiments is imposed by the resources available, since

larger models require more memory and CPU time. For a typical present-day workstation having
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a RISC CPU and 64 megabytes of main memory, a genetic algorithm together with an EA model

having k = 17 states will require approximately 15 hours to compute 200,000 �tness evaluations.

A block diagram showing the major components of the system is shown in Figure 5.29. The

simulation engine is the core component of the system. It processes and stores the rule table

input and iterates the cellular space over time. The statistics collection subprogram runs a single

simulation using the simulation engine and collects relevant statistics at each time step. The

visualization subprogram allows viewing of both CA and EA simulations. A simulation may be

viewed in both forward and backward time directions (moving in the backward time direction

simply displays previously generated images, and does not mean the cellular space can be iterated

in this direction). In addition, graphics �les may be saved at each time step and later printed out for

hardcopy output (examples of which are the diagrams showing evolving structures in this thesis).

The sources of input for the system are labelled \GA parameters" and \rule table and parameters".

These input sources con�gure the system. Note that the output from the \Sequential Genetic

Algorithm" subprogram is a rule table that is suitable for statistics collection and visualization.

GA
parameters

designer

Simulation
Engine

Parallel
Genetic

Algorithm

Meta-Genetic
Algorithm

Visualization

Statistics
Collection

Sequential
Genetic

Algorithm

Fitness
Functions

rule table
and parameters

designer

designer

Figure 5.29: System block diagram shows the major components of the system in which

experiments were performed. The simulation engine forms the core of the

system since it is used by all components either directly or indirectly. Boxes

indicate subprograms of the system, and ovals represent parameter sets that

con�gure the system.

The genetic algorithm subprograms provide sequential and parallel implementations, and a

meta-level GA for multiobjective optimization. The parallel genetic algorithm is depicted in Fig-

ure 5.30. In a technique called semi-synchronous master slave [Goldberg89], chromosomes are

distributed to individual processing nodes via message-passing, EA/CA simulations are run locally,
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�tnesses calculated, and then �tnesses are sent back to the host node which maintains the popu-

lations. The name semi-synchronous is used since the host will asynchronously send chromosomes

to the processing elements (PEs) during a single generation, however, it must wait (synchronize)

until all PEs have �nished before proceeding to the next generation. This form of parallelism is

e�cient as long as there is a low variance among simulation execution times, which is the case for

these simulations.

PE1 PE2 PEn

HOST

chromosomes fitness values

Each PE executes a complete
EA/CA Simulation

GA Processing

Figure 5.30: Semi-synchronous master/slave GA parallelism. Host processor executes

the GA. In parallel, processing elements receive chromosomes, execute an

EA or CA simulation, then send �tness values to the host.

Parallelism is also obtained when performing statistical trials, or experiments. As shown in

Figure 5.31, each of the processing elements runs an entire genetic algorithm in parallel, and upon

completion sends the highest-�tness chromosome to the host for storage. The host also scans for

idle PEs and launches GAs as appropriate until the experiment is complete. The host operates

asynchronously since it has no dependencies to wait for, and thus it does not need to synchronize

at any point during the experiment.

The third form of parallel processing implemented in the software system is the system for exe-

cuting the meta-level GA. As shown in Figure 5.32, the parallelism is similar to that of Figure 5.31.

In this case, however, the host processor is running a separate (smaller and less computationally

intensive) GA to optimize �tness measure weights of Equation 4.16. The PEs each execute a

complete primary (i.e., rule discovery) GA and send �tness values to the host.

The system was implemented in the C++ programming language and is comprised of over

10,000 lines of source code. It was developed on Sun workstations and has successfully run on

other computer systems including DEC Alpha, RS/6000, and PCs running UNIX. The parallel

versions supported run on the following supercomputers: DEC Alpha processor farm clusters,

Thinking Machines Connection Machine 5, and the IBM SP2. A set of UNIX shell scripts is also

part of the system, and it allows for load balancing on processor farm clusters.

The system has been released into the public domain so that other researchers may use this

system as a research tool. This and other details concerning the simulation system may be found

in Appendix B.
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PE1 PE2 PEn

HOST

random number
seeds

highest fitnesses
from GAs

Each PE executes
a complete GA

Experiment Control

Figure 5.31: Asynchronous master/slave parallelism for running an experiment. Host

processor oversees experiment by asynchronously starting GAs when idle

PEs are seen. Each processing element executes, in parallel, a complete GA,

then sends the highest-�tness chromosome found to the host for storage.

PE1 PE2 PEn

HOST

fitness measure
weights fitness values

Each PE executes a
complete Primary GA

Meta-level GA Processing

Figure 5.32: Parallelism in meta-level GA. Host processor executes meta-level GA and

distributes �tness measure weights to PEs. Each PE executes, in parallel,

a complete GA, then sends the overall �tness to the host.
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Chapter 6

Conclusions and Future Work

The research presented in this dissertation focuses on the automatic design and analysis of self-

replicating structures in cellular space automata models. In conclusion, we summarize the main

contributions of this work and discuss open problems and areas where further study would be

bene�cial.

6.1 Conclusions

The research results in this dissertation contain several important contributions towards the the-

ory of self-replicating automata that began with the work of John von Neumann. Automatic

creation of self-replicating structures in cellular space models was shown to be possible and meth-

ods for improving the e�ciency of the discovery process were presented. These include the use of

component-sensitive input and use of the e�ector automata model introduced in Chapter 3. Central

to the rule discovery process was the design of e�ective �tness measures to promote self-replicating

behaviors. Results presented showed that these �tness measures:

� did not impose a strong bias towards a particular process of self-replication as evidenced by

the large variety of structures found,

� are not speci�c to any one cellular space model,

� are computationally feasible,

� and resulted in a statistically signi�cant quantity of discovered self-replicating structures.

Building on the success of automatically discovering self-replicating structures, an analysis of a

large collection of such structures was undertaken, a task that was never before possible due to the

lack of specimens to study. Representative samples of these structures were presented and analyzed

both quantitatively and qualitatively.

The self-replicating structures presented in this dissertation compare favorably in terms of

simplicity with those generated manually in the past [Reggia93]. However, more interesting is that

these replicating structures di�ered in unexpected ways from those developed in previous automata

models. For example, they all were moving during replication, and all generated debris (unused

extra components). In some simulations, the replicant was not the initial seed structure but a

larger structure built from it. Such unanticipated results suggest that genetic algorithms can be

powerful tools for exploring the space of possible self-replicating structures. Furthermore, if the
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basic physical processes can be identi�ed and represented e�ectively, such an approach might even

be modi�ed and applied to discover new self-replicating molecular structures [Hong92].

6.2 Future Work

The paradigm of component-sensitive input introduced in this thesis is a general technique that

could be further exploited in other cellular space models, especially those models that have proven

too computationally burdensome to simulate in the past. The e�ector automata model provides

many of the same advantages of the standard cellular automata model, yet with more physical re-

alism, smaller rule tables and search spaces, and more complex automata. As in CA applications, a

vast range of potential behaviors are possible with EA models. Future work on automatic discovery

of self-replicating structures that would be useful includes:

Investigation of Minimal Structure Size An open problem related to this research concerns

the question of minimal self-replicating structure size, in terms of the rule table size. The results

of this dissertation provide intuition into solving such a problem since two and three component

structures were used which had small numbers of rules used in the replication process.

Use of the Moore Neighborhood The studies in this thesis concentrated on automata using

the von Neumann neighborhood. Using the larger Moore neighborhood (Figure 2.1) would pre-

sumably allow more complex self-replicating structures to develop due to greater interaction among

components.

Investigation of Other Automata Models In addition to the cellular automata and e�ector

automata models studied in this thesis, other cellular space models such as stochastic automata

and inhomogeneous cellular automata [Hartman86] can be used with the rule discovery techniques

presented herein. Also, properties of the models researched could be varied in the following ways:

hexagonal space tessellation, other cell contention policies and varying sets of actions (for EA

models).

Increased Complexity of Seed Structures The seed structures used were limited to a maxi-

mum of four components due to computational limitations. As more powerful computers become

available, it would be of interest to discover rule tables for larger structures, some having unique

components, and others having repeated components. One would hypothesize that a GA would

more easily discover rule tables for seed structures having unique components because in the case of

repeated components, a speci�c repeated component has to be trained to facilitate self-replication

in many more situations. Also of interest are cases in which not all of the component types are

represented in the seed structure.

Self-organization of Seed Structure Another avenue of pursuit is to begin with a random

con�guration of components distributed throughout the cellular space. Through the use of e�ective

�tness functions, it might be possible to encourage the self-organization of seed structures which

have the ability to self-replicate. Such an experiment could be constructed so that if self-replication

does not emerge within a given timeframe, the space becomes completely quiescent.
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Co-evolution of the Seed Structure Co-evolving the seed structure and the rule table simul-

taneously might yield interesting results. Although such an approach was brie
y tried, with more

powerful computers such an approach would be worthwhile.

Re�nement of Fitness Measures Assigning partial �tness to nascent self-replicating structures

is a non-trivial problem, and it would be di�cult, if not impossible to de�ne an optimal �tness

function. However, further re�nement of the �tness measures could result in techniques that yield

even larger quantities of self-replicating structures.

Biochemical Simulation The EA model and research software used in this thesis could be

adapted to simulate, at a low level, basic biochemical nucleotide interactions. The goal of such an

experiment could be to see what underlying cellular space rules are needed to promote template-

directed replication. For example, EA components named A, C, G, and T could be used to represent

the four nucleotide bases of DNA.
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Appendix A

Calculation of Circular Permutations

Certain calculations of search space sizes presented in the main text rely on advanced combinatorics.

Circular permutations are needed in calculations involving isotropic neighborhood patterns. Here

we present below the main points from this theory. For a full treatment, see a text on combinatorial

theory such as [Hall67, pg. 12].

In order to derive an expression for the number of circular permutations, the M�obius function

from number theory, denoted �(n), is de�ned as follows. First, we note that every positive integer

n > 1 has a unique factorization as a product of prime powers

n = pi11 p
i2
2 � � � p

ir
r (A.1)

where each p is a unique prime and each i is a positive integer. �(n) is then de�ned as:

�(n) =

8>><
>>:

1 if n = 1

0 if any ik > 1 in Eq. A.1

(�1)r if i1 = i2 = � � � = ir = 1 in Eq. A.1

(A.2)

The number of circular permutations of length n, using k distinct symbols is denoted kCPn,

and is calculated by summing the function M(n) over djn (the notation djn (d,n positive integers)

represents each integer in f1; : : : ; dg that evenly divides n for d � n). M(n) is the number of

circular permutations of period n, and is expressed as

M(n) =
1

n

X
djn

�(d)k
n
d (A.3)

Thus the total number of distinct circular permutations of length n is

kCPn =
X
djn

M(d) (A.4)

As an example, consider UL06W8V, a 2-D cellular automata model having 4 strongly symmetric

cell states f�;#;L;Og, and 1 weakly symmetric symbol fAg which can be rotated in any of 4

directions fA,
A
,

A
, Ag. Using the von Neumann neighborhood, we have n = 4, and k = 8 cell

states. The calculation of circular permutations begins by calculating values forM in Equation A.3
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as follows:
M(n) = 1

n

P
djn �(d)k

n
d

M(1) = 1
1 [(1)8

1
1 ]

= 8

M(2) = 1
2
[(1)8

2

1 + (�1)8
2

2 ]

= 28

M(4) = 1
4 [(1)8

4
1 + (�1)8

4
2 ]

= 1008

and then substituting into Equation A.4:

8CP4 = M(1) +M(2) +M(4)

= 1008 + 28 + 8

= 1044

Thus, there are 1044 state transitions for each of the four strongly symmetric components, giving a

total of 4176. For the weakly symmetric component, there are 84 = 4096 transition rules. Summing

these we get 8272 total transition rules.

For reference purposes, Table A.1 compiles values of kCP4 for small k. The function k4 repre-

sents the number of length four permutations of k unlike objects, when each may be repeated any

number of times, and is tabulated for use when comparing isotropic to non-isotropic cellular space

models.

k k4 kCP4

1 1 1

2 16 6

3 81 24

4 256 70

5 625 165

6 1296 336

7 2401 616

8 4096 1044

9 6561 1665

10 10000 2530

k k4 kCP4

11 14641 3696

12 20736 5226

13 28561 7189

14 38416 9660

15 50625 12720

16 65536 16456

17 83521 20961

18 104976 26334

19 130321 32680

20 160000 40110

Table A.1: Tabulation of permutation values for n=d=4.
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Appendix B

Software System Details

B.1 Introduction

The software environment consists of 12 programs which are divided into two groups of six: one for

simulating the EA model, and the other for the CA model. For each model there is an simulation

engine, an X-window viewer, and a genetic algorithm. Additionally, there are two versions of each

program: one in which the input paradigm is component-sensitive input (CSI) and the other is

for state-sensitive input (SSI). The names of all the programs and their associated properties are

summarized in Table B.1 below.

CA EA

SSI CSI SSI CSI

Simulation engine ca1 ca2 ea1 ea2

X-Windows viewer xca1 xca2 xea1 xea2

Genetic algorithm caga1 caga2 eaga1 eaga2

Table B.1: Software system program names.

The software has been tested and successfully runs on �ve computing platforms: Sun SPARC

workstations running SunOS/Solaris, DEC Alpha workstations running Digital UNIX, IBM RS/6000

workstations running AIX, and IBM PC compatibles running Linux and BSD/OS UNIX. All of

these computers need to have C and C++ compilers, lex, and X-Windows installed. In addition

parallel versions of the genetic algorithm will run on Thinking Machines CM5, DEC Alpha farm

clusters, and IBM SP2 systems.

B.2 Installing the System

Installation of the software involves two steps: unpackaging the software and building the programs.

The distribution �le will be called ea.tar.gz or ea.tgz. To unpackage this �le, enter the following

commands:

gunzip ea.tar.gz or gunzip ea.tgz

tar -xvf ea.tar
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Building the programs is accomplished by using the make utility. For example, the create the

xea2 program, one enters the command make xea2. The make system is con�gured by default for

Sun workstations. To install the programs on non-Sun workstations, users should read the README

and Makefile �les for assistance.

Once installed, each program is con�gured for a particular run by using con�g �les. Con�g �les

all have names that end in \.cfg". A number of demonstration con�g �les are included, and are

useful for testing that the system is working properly. For example, one can enter the command,

xea2 -c srs3a.cfg

which will allow the user to view an EA simulation based on the con�guration information in the

srs3a.cfg �le. The \-c" option speci�es that a con�g �le should be loaded.

B.3 Using the Viewer

The viewer programs allow the user to observe cellular and e�ector automata models over time.

The user is presented with a square space, 80 cells long on each side. Figure B.1 shows the viewer

with the major areas outlined. After loading the con�g �le, the user may begin by advancing the

simulation one time step at a time by pressing the forward button -> . A fast-forward button -->

permits viewing of a rapid succession of con�gurations, and a stop button Stop halts this process.

The reverse button <- allows the user to iterate backwards in time (previously displayed images

are shown { the cellular does not actually iterate in reverse). Figure B.2 shows the simulation

controls as they appear at the top of the window.

In the center of the viewer a square, called a frame, is displayed for two purposes: to provide a

frame a reference (with respect to moving automata); and for selecting the area of the screen to

save to a �le. The following list demonstrates the capabilities of the viewer program.

� To change the number of cells in the frame, click on any button in the top row of the

Preferences dialog box (Figure B.3).

� To toggle the display of the frame, click on the View menu and select \Toggle frame."

� To toggle the display of the grid, click on the View menu and select \Toggle grid."

� To generate PostScript output of a single frame, click on the File menu and select \Save 1

frame as PostScript."

� To generate PostScript output of a series of frames, click on the File menu and select \Save

n frames as PostScript."

� To change the PostScript font size click on any button in the bottom row of the Preferences

dialog box (Figure B.3).

� To generate a bitmap image of a single frame, click on the File menu and select \Save 1

frame as bitmap."

121



Shortcuts

For convenience, single keystroke commands can be entered to accomplish certain functions. These

are summarized in Table B.3. A window containing similar information is available by choosing

Shortcuts... from the File menu.

Key Command

n load next con�g �le

r reload current con�g �le

space forward 1 time-step

b backward 1 time-step

q quit program

Table B.2: Commands using one keystroke.

B.4 Using the Simulation Engine

The simulation programs give the user a convenient way to quickly collect statistics regarding CA

or EA rulesets. The statistics are written to an output �le which the user can examine. The

�lename given to the output �le is the same as the con�g �le, except \stats" is prepended to the

name.

After setting up the appropriate con�g �le, the simulation engine can be invoked, for example,

as follows:

ea2 -n 15 -c ea2.cfg

where -n denotes the number of time steps to simulate, and -c denotes the con�g �le. The statistics

�le is a text �le containing data regarding the run. This data are arranged as tables where rows

correspond to time{steps. Also in this �le are the computed values for all the available �tness

functions.

B.5 Using the Genetic Algorithm

The genetic algorithm programs allow the user to experiment with having a GA search for high-

performing CA or EA rule tables. GA-related parameters are stored in a con�g �le which is read by

the program. An example con�g �le is shown in Figure B.6. The parameters shown in Figure B.6

are, for the most part, self-explanatory. The format of the �le must adhere to what is seen in this

example, with the exception that multiple space characters are equivalent to one. There must not

be any blank lines in this �le, and the ordering of lines must remain as shown. The �tness function

section selects which functions should be used by the GA. There are currently about twenty such

functions and users may write their own (in C/C++) which can be added to the source code �le

fitness.cc. Adding new �tness functions requires knowledge of the source code, and more detailed

instructions regarding this can be found in the documentation that accompanies the software.

As an example of running the GA, one could issue the command:

eaga2 -c eaga2.cfg
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which will run a GA on the CSI version of the EA model. During a GA run, the GA will save the

best-of-generation (also called \best-yet") rule table in a �lename that begins with by and which

includes a time-stamp. This �le may then be used as input to run a standalone simulation.

123



frame

status

menus statuscontrols

cells

Figure B.1: xea viewing program showing main areas. Dashed ovals indicate menus,

control buttons, and status information areas. Italicized text is also overlayed

to show the frame and cells.

Figure B.2: Simulation controls located at top of main window.
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Figure B.3: Preferences dialog box.

Figure B.4: The File pull-down menu.

Figure B.5: The View pull-down menu.
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population_size = 100

max_number_of_generations = 2000

stop_if_constant_for_X_generations = 2000

crossover_probability = 0.8

mutation_probability = 0.1

seed = 6030

number_of_simulator_iterations = 10

stats_collection_begin = 1

stats_collection_end = 10

stop_if_fitness_above = 0.99

neighbor_orientation = insensitive

fitness_functions = 3

ff = 600 wt = 0.3

ff = 853 wt = 0.6

ff = 910 wt = 0.1

automata = 3 types:

A is directed

B is directed

C is directed

IC = 3 components:

A (40, 40) at 0

B (40, 41) at 0

C (41, 41) at 0

Figure B.6: Example con�g �le for use with genetic algorithm.
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Appendix C

Discovered Self-replicating Structures

A small archive of the discovered self-replicating structures appears on the following pages.
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Figure C.17: Self-replicating structure UL2WC9V9.
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Figure C.18: Self-replicating structure UL2WC9V10.
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FigureC.19:Self-replicatingstructureUL2W9V4.
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FigureC.20:Self-replicatingstructureUL2W9V6.

147



A
B

t=
0

B

A

A t=
1

B

B

A

A t=
2

A

A

B

B
B

A

A

t=
3

B

B

B

B

A

A

A

A

t=
4

A

A

A

A

B

B

B

B

B

B

A

A

A

A

t=
5

B

B

B

B

B

B

B

B

A

A

A

A

A

A

A

A

t=
6

A

A

A

A

A

A

A

B

B

B

B

B

B

B

B

B

B

B

A

A

A

A

A

A

A

t=
7

B

B

B

B

B

B

A

B

B

B

B

B

B

B

A

A

A

A

A

A

A

A

A

A

A

A

A

t=
8

F
ig
u
r
e
C
.2
1
:
S
el
f-
re
p
li
ca
ti
n
g
st
ru
ct
u
re

U
L
2
W
9
V
7
.

1
4
8



A
B

t=
0

A B

B

t=
1

A

A

BB

B

t=
2

AA

A

BB

B

B

B

t=
3

AA

A

A
A

BBB B

B

BB

B

t=
4

AAA A

A

AA

A

BB

B

B B

B

B

B

B

B

B

t=
5

AA

A

A A

A

A

A

A

A
A

BBB B

B

B B

B B

B B

B

BB

BB

B

t=
6

AAA A

A

A A

A A

A A

A

AA

AA

A

BB

B

B
B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

t=
7

AA

A

A

A

A

A

A

A

A

A
A

A

A

A

A

A

A

A

A

B BBB B

B

B B

BB
B B

B

B B

B

B B
B B

B B

B

BB

BB

BB

B

t=
8

F
ig
u
r
e
C
.2
2
:
S
el
f-
re
p
li
ca
ti
n
g
st
ru
ct
u
re

U
L
2
W
9
V
9
.

1
4
9



AB

t=0

B

A

A

t=1

B

B

A

A A

t=2

B

B B

A

A

A

A

A

t=3

B
B

B

B

B

A

A

A

AA

A

A A

t=4

B

B

B

BB

B

B B

A

A

A

A

A A

A

A

A

A

A

t=5

B

B

B

B

B

B

B

B

B

A

A

A

A

A

A

A
A

AA

A

A A

A A

t=6

B

B

B

B

B

B

B

B

BB

B

B B

B B

A
A

A

A
AA

A

A
A

A

A A

A

A

A

A

A

A

A

A

A

t=7

B

B

B

BB

B

B

B

B

B

B

B

B

B

B

B

B

BB

A

A

A

A

A

A

AA

AA

A

A

A

A

A

AA

AA

A

A A

A A

A A

t=8

FigureC.23:Self-replicatingstructureUL2W9V10.

150



References

[Andre96] D. Andre, F. Bennett, and J. Koza, \Evolution of Intricate Long-distance Com-

munication Signals in Cellular Automata using Genetic Programming." In Ar-

ti�cial Life V: Proceedings of the Fifth International Workshop on the Synthesis

and Simulation of Living Systems, MIT Press, Cambridge, 1996.

[Arbib66] M. A. Arbib, \Simple Self-Reproducing Universal Automata," Information and

Control, Vol. 9, pp. 177{189, 1966.

[Arbib67] M. A. Arbib, \Automata Theory and Development: Part I," Journal of Theo-

retical Biology, Vol. 14, pp. 131{156, 1967.

[Arbib69a] M. A. Arbib, Theories of Abstract Automata, Prentice-Hall, Englewood Cli�s,

NJ, 1969.

[Arbib69b] M. A. Arbib, \Self-Reproducing Automata: Some Implications for Theoretical

Biology." In Towards a Theoretical Biology, Vol. 2, C. H. Waddington (ed),

University of Edinburgh Press, Edinburgh, pp. 204{226, 1969.

[Baluja95] S. Baluja, \An Empirical Comparison of Seven Iterative and Evolutionary Func-

tion Optimization Heuristics," Carnegie Mellon School of Computer Science

Technical Report CMU-CS-95-193, (Pittsburgh, PA, 15213).

[Bennett85] C. Bennett and R. Landauer, \The Fundamental Physical Limits of Computa-

tion," Scienti�c American, Vol. 253, July, pp. 48{56, 1985.

[Booker90] L. Booker, D. Goldberg, and J. Holland, \Classi�er Systems and Genetic Al-

gorithms." In Readings in Machine Learning, J. Shavlik, T. Dietterich (eds.),

Morgan Kaufmann, San Mateo, CA, pp. 404{427, 1990.

[Brooks94] R. A. Brooks and P. Maes (eds), Arti�cial Life IV, Proceedings of the Fourth

International Workshop on the Synthesis and Simulation of Living Systems,

MIT Press, 1994.

[Burks70] A. Burks, Essays on Cellular Automata, Univ. of Illinois Press, 1970.

151



[Burks74] A. Burks, \Cellular Automata and Natural Systems," Cybernetics and Bionics,

Oldenbourg, Munich, 1974.

[Burks84] C. Burks and J. D. Farmer, \Towards Modeling DNA Sequences as Automata,"

Physica D, 10, North-Holland, pp. 157{167, 1984.

[Byl89] J. Byl, \Self-Reproduction in Small Cellular Automata," Physica D, 34, North-

Holland, pp. 295{299, 1989.

[Conrad72] M. Conrad, \Information Processing in Molecular Systems," Currents in Mod-

ern Biology, 5, North-Holland, pp. 1{14, 1972.

[Chou94] H. Chou, J. Reggia, R. Navarro-Gonz�alez, and J. Wu, \An Extended Cellu-

lar Space Method for Simulating Autocatalytic Oligonucleotides," Computers

Chem., Vol. 18, No. 1, pp. 33{43, 1994.

[Codd68] E. F. Codd, Cellular Automata, Academic Press, 1968.

[Crutch�eld95] J. P. Crutch�eld and M. Mitchell, \The Evolution of Emergent Computation,"

Proceedings of the National Academy of Sciences, Vol. 92, No. 23, p. 10742,

November, 1995.

[Dandekar92] T. Dandekar and P. Argos, \Potential of Genetic Algorithms in Protein Folding

and Protein Engineering Simulations," Protein Engineering, 5, 7, pp. 637{645,

1992.

[Davis91] L. D. Davis (ed), Handbook of Genetic Algorithms, Van Nostrand Reinhold,

New York, 1991.

[Davidor91] Y. Davidor, \Genetic Algorithms and Robotics," Robotics and Automated Sys-

tems, World Scienti�c, Singapore, 1991.

[De Jong75] K. De Jong, An Analysis of the Behavior of a Class of Genetic Adaptive Systems,

Ph.D. Thesis, University of Michigan, Ann Arbor, 1975.

[De Jong87] K. De Jong, \On Using Genetic Algorithms to Search Program Spaces," Pro-

ceedings of the Second International Conference on Genetic Algorithms, pp.

210{216, 1987.

[Drexler89] K. E. Drexler, \Biological and Nanomechanical Systems: Contrasts in Evolu-

tionary Capacity." In [Langton88], pp. 501{519, 1989.

[Farmer91] J. D. Farmer, \Arti�cial Life: The Coming Evolution." In [Langton91a], pp.

815{840, 1991.

152



[Freitas82] R. Freitas and W. Gilbreath (eds), Advanced Automation for Space Missions,

NASA Conference Publication 2255, National Technical Information Service,

Spring�eld, VA, 1982.

[Frisch86] U. Frisch, B. Hasslacher, and Y. Pomeau, \Lattice-gas Automata for the Navier-

Stokes Equation," Physical Review Letters, 56, pp.1505, 1986.

[Gardner70] M. Gardner, \The Fantastic Combinations of John Conway's New Solitaire

Game Life," Scienti�c American, 223:4, pp. 120{123, 1970

[Ginsberg93] M. Ginsberg, Essentials of Arti�cial Intelligence, Morgan Kaufmann, San Ma-

teo, CA, 1993.

[Goel89] N. S. Goel and R. L. Thompson, \Movable Finite Automata (MFA): A New

Tool for Computer Modeling of Living Systems." In [Langton88], pp. 317{340,

1989.

[Goldberg89] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine

Learning, Addison-Wesley, Reading, Mass, 1989.

[Grefenstette86] J. Grefenstette, \Optimization of Control Parameters for Genetic Algorithms,"

IEEE Transactions on Systems, Man, and Cybernetics, Vol. 16, No. 1, pp. 122{

128, 1986.

[Hall67] M. Hall, Combinatorial Theory, Blaisdell Publishing, Waltham, Mass., 1967.

[Harp91] S. A. Harp and T. Samad, \Genetic Synthesis of Neural Network Architecture."

In [Davis91], pp. 202{221, 1991.

[Hartman86] H. Hartman and G. Vishniac, \Inhomogeneous Cellular Automata." In Dis-

ordered Systems and Biological Organization, E. Bienenstock (ed.), Springer-

Verlag, Heidelberg, pp. 53{57, 1986.

[Hogeweg88] P. Hogeweg, \Cellular Automata as a Paradigm for Ecological Modeling," Ap-

plied Mathematics and Computation, 27, pp. 81{100, 1988.

[Holland75] J. H. Holland, Adaptation in Natural and Arti�cial Systems, Univ. of Michigan

Press, Ann Arbor, 1975.

[Holland76] J. H. Holland, \Studies of the Spontaneous Emergence of Self-Replicating Sys-

tems Using Cellular Automata and Formal Grammars." In Automata, Lan-

guages, Development, A. Lindenmayer and G. Rozenberg (eds), North-Holland,

pp. 385{404, 1976.

153



[Holland80] J. H. Holland, \Adaptive Algorithms for Discovering and Using General Pat-

terns in Growing Knowledge Bases," International Journal of Policy Analysis

and Information Systems, Vol. 4, pp. 217{240, 1980.

[Holland92] J. H. Holland, \Genetic Algorithms," Scienti�c American, July, pp. 66{72, 1992.

[Hong92] J.-I. Hong, Q. Feng, V. Rotello, and J. Rebek, Jr., \Competition, Cooperation,

and Mutation: Improving a Synthetic Replicator by Light Irradiation," Science,

255, pp. 848{850, 1992.

[Hopcroft79] J. Hopcroft and J. Ullman, Introduction to Automata Theory, Languages, and

Computation, Addison-Wesley, Reading, Mass, 1979.

[Jacobson58] H. Jacobson, \On Models of Self-Reproduction," American Scientist, 46, pp.

255{284, 1958.

[Je�erson91] D. Je�erson, R. Collins, C. Cooper, M. Dyer, M. Flowers, R. Korf, C. Taylor,

and A. Wang, \Evolution as a Theme in Arti�cial Life: The Genesys/Tracker

System." In [Langton91a], pp. 549{578, 1991.

[Kanji93] G. Kanji, 100 Statistical Tests, Sage Publications, London, 1993.

[Kephart94] J. O. Kephart, \A Biologically Inspired Immune System for Computers."

In [Brooks94], pp. 130{139, 1994.

[Koza92] J. Koza, Genetic Programming: On the Programming of Computers by Means

of Natural Selection, MIT Press, 1992.

[Koza94] J. Koza, \Arti�cial Life: Spontaneous Emergence of Self-Replicating and Evo-

lutionary Self-Improving Computer Programs." In [Langton94], pp. 225{262,

1994.

[Laing76] R. Laing, \Automaton Inspection," J. Computer and System Sciences, 13, pp.

172{183, 1976.

[Langley87] P. Langley, H. Simon, and G. Bradshaw, \Heuristics for Empirical Discovery."

In Computational Models of Learning, L. Bolc (ed), Springer-Verlag, 1987.

[Langton84] C. G. Langton, \Self-Reproduction in Cellular Automata," Physica D, 10, pp.

135{144, 1984.

[Langton86] C. G. Langton, \Studying Arti�cial Life with Cellular Automata," Physica D,

22, pp. 120{149, 1986.

[Langton88] C. G. Langton (ed), Arti�cial Life, Santa Fe Institute Studies in the Sciences

of Complexity, Vol. VI, Addison-Wesley, 1988.

154



[Langton90] C. G. Langton, \Computation at the Edge of Chaos: Phase Transitions and

Emergent Computation," Physica D, 42, pp. 12{37, 1990.

[Langton91a] C. G. Langton, C. Taylor, J. D. Farmer, and S. Rasmussen (eds), Arti�cial Life

II, Santa Fe Institute Studies in the Sciences of Complexity, Vol. X, Addison-

Wesley, 1991.

[Langton91b] C. G. Langton, \Life at the Edge of Chaos." In [Langton91a], pp. 41{91, 1991.

[Langton94] C. G. Langton (ed), Arti�cial Life III, Santa Fe Institute Studies in the Sciences

of Complexity, Proc. Vol. XVII, Addison-Wesley, 1994.

[Lenat77] D. Lenat, \The Ubiquity of Discovery," Arti�cial Intelligence, 9, pp. 257{285,

1977.

[Lohn95] J. Lohn and J. Reggia, \Discovery of Self-Replicating Structures using a Genetic

Algorithm," 1995 IEEE International Conference on Evolutionary Computing,

Perth, pp. 678{683, 1995.

[Lugowski89] M. Lugowski, \Computational Metabolism: Towards Biological Geometries for

Computing." In [Langton88], pp. 341{368, 1989.

[McMullin92a] B. McMullin, \The Holland �-Universes Revisited." In Toward a Practice of Au-

tonomous Systems: Proceedings of the First European Conference on Arti�cial

Life, F. Varela and P. Bourgine (eds), MIT Press, pp. 317{326, 1992.

[McMullin92b] B. McMullin, Arti�cial Knowledge: An Evolutionary Approach, Ph.D. Thesis,

Department of Computer Science, The National University of Ireland, Univer-

sity College Dublin, 1992.

[Mange94] D. Mange and A. Stau�er, \Introduction to Embryonics: Towards New Self-

repairing and Self-Reproducing Hardware Based on Biological-like Properties,"

Arti�cial Life and Virtual Reality, John Wiley, 1994.

[Mange95] D. Mange, S. Durand, E. Sanchez, A. Stau�er, G. Tempesti, P. Marchal, and

C. Piguet, \A New Self-Reproducing Automaton Based on a Multi-Cellular

Organization." Dept. of Comp. Sci. Tech. Report, Swiss Federal Institute of

Technology (Lausanne, Switzerland CH 1015), 1995.

[Merkle94] R. C. Merkle, \Self-replicating Systems and Low Cost Manufacturing." In

The Ultimate Limits of Fabrication and Measurement, M.E. Welland, J.K.

Gimzewski, (eds), Kluwer, Dordrecht, pp. 25{32, 1994.

[Miller74] S. L. Miller and L. E. Orgel, The Origins of Life on Earth, Prentice-Hall, En-

glewood Cli�s, NJ, 1974.

155



[Mitchell93] M. Mitchell, P. T. Hraber, and J. P. Crutch�eld, \Revisiting the Edge of Chaos:

Evolving Cellular Automata to Perform Computations," Complex Systems, 7

(2), pp. 89{130, 1993.

[Mitchell94] M. Mitchell, J. P. Crutch�eld, and P. T. Hraber, \Evolving Cellular Automata

to Perform Computations: Mechanisms and Impediments," Physica D, 75, pp.

361{391, 1994.

[Mitchell96] M. Mitchell, An Introduction to Genetic Algorithms, MIT Press, Cambridge,

1996.

[Moore62] E. F. Moore, \Machine Models of Self-Reproduction," Proc. Fourteenth Symp.

on Applied Mathematics, pp. 17{33, 1962.

[Myhill64] J. Myhill, \The Abstract Theory of Self-Reproduction," Views on General Sys-

tems Theory, Proc. Second Systems Symp. at Case Inst. of Technology, M.

Mesarovic (ed), Wiley, pp. 106{118, 1964.

[Orgel92] L. E. Orgel, \Molecular Replication," Nature, 358, pp. 203{209, 1992.

[Packard88] N. H. Packard, \Adaptation Toward the Edge of Chaos." In J.A.S. Kelso, A.J.

Mandell, and M.F.Shlesinger (eds), Dynamic Patterns in Complex Systems, pp.

293{301, World Scienti�c, Singapore, 1988.

[Parsons93] R. Parsons, S. Forrest, and C. Burks, \Genetic Algorithms for DNA Sequence

Assembly," Proc. First Intl. Conf. on Intelligent Systems for Molecular Biology,

pp. 310{318, 1993.

[Penrose58] L. Penrose, \Mechanics of Self-Reproduction," Ann. Human Genetics, 23, pp.

59{72, 1958.

[Perdang93] J. M. Perdang and A. Lejune (eds), Cellular Automata: Prospects in Astrophys-

ical Applications, World Scienti�c, Singapore, 1993.

[Preston84] K. Preston and M. Du�, Modern Cellular Automata, Plenum, New York, 1984.

[Ray92] T. Ray, \Evolution, Ecology and Optimization of Digital Organisms," Santa Fe

Institute Working Paper 92-08-042, 1992.

[Richards90] F. C. Richards, T. P. Meyer, and N. H. Packard, \Extracting Cellular Automa-

ton Rules Directly from Experimental Data," Physica D, 45, pp. 189{202, 1990.

[Reggia93] J. A. Reggia, S. Armentrout, H. H. Chou, and Y. Peng, \Simple Systems That

Exhibit Self-Directed Replication," Science, 259, pp. 1282{1288, February, 1993.

156



[Shahookar90] K. Shahookar and P. Maxumder, \A Genetic Approach to Standard Cell Place-

ment Using Meta-Genetic Parameter Optimization," IEEE Transactions on

Computer-Aided Design, 9 (5), pp. 500{511, 1990.

[Stephenson92] I. Stephenson and R. Taylor, \Creatures: A Simulation Environment for Au-

tonomous Behavior," Technical Report ASEG.92.16, University of York (York,

England, Y01 5DD), 1992.

[Taub61] A. H. Taub, John von Neumann: Collected Works. Volume V: Design of Com-

puter, Theory of Automata and Numerical Analysis, Oxford, Pergamon Press,

1961.

[Thatcher70] J. W. Thatcher, \Universality in the von Neumann Cellular Model."

In [Burks70], pp. 132{186, 1970.

[To�oli87] T. To�oli and N. Margolus, Cellular Automata Machines, MIT Press, 1987.

[Varela74] F. G. Varela, H. R. Maturana, and R. Uribe, \Autopoiesis: The Organization of

Living Systems, its Characterization and a Model," BioSystems, 5, pp. 187{196,

1974.

[Vit�anyi73] P. M. B. Vit�anyi, \Sexually Reproducing Cellular Automata," Mathematical

Biosciences, 18, pp. 23{54, 1973.

[von Neumann51] J. von Neumann, \The General and Logical Theory of Automata." In [Taub61],

pp. 288{328, 1951.

[von Neumann66] J. von Neumann, Theory of Self-Reproducing Automata, A. Burks (ed), Univer-

sity of Illinois Press, 1966.

[Watson87] J. D. Watson, N. H. Hopkins, J. W. Roberts, J. A. Steitz, and A. M. Weiner,

Molecular Biology of the Gene, 4th ed., Benjamin/Cummings, Menlo Park,

1987.

[Wilson89] S. W. Wilson, \The Genetic Algorithm and Simulated Evolution,"

in [Langton88], 157{166, 1989.

[Wolfram84] S. Wolfram, \Universality and complexity in cellular automata," Physica D, 10,

pp. 1{35, 1984.

[Wolfram86] S. Wolfram, Theory and Applications of Cellular Automata, World Scienti�c,

Singapore, 1986.

[Wolfram94] S. Wolfram, Cellular Automata and Complexity, Addison-Wesley, Addison-

Wesley, Reading, Mass, 1994.

157




